A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using the Tissue Impulse Response Function to Streamline Fractionated MRgFUS-Induced Hyperthermia. | LitMetric

: Combining radiation therapy with mild hyperthermia, especially via magnetic resonance-guided focused ultrasound (MRgFUS), holds promise for enhancing tumor control and alleviating symptoms in cancer patients. However, current clinical applications of MRgFUS focus primarily on ablative treatments, and using MRI guidance for each radiation session increases treatment costs and logistical demands. This study aimed to test a streamlined workflow for repeated hyperthermia treatments that reduces the need for continuous MRI monitoring, using an approach based on impulse response function (Green's function) to optimize acoustic power settings in advance. : We implemented the Green's function approach in a perfused, tissue-mimicking phantom, conducting 30 experiments to simulate hyperthermia delivery via MRgFUS. Pre-calculated acoustic power settings were applied to maintain a stable hyperthermia target without the need for real-time feedback control from MRI thermometry. Additionally, a retrospective analysis of patient thermometry data from MRgFUS sonications was performed to assess feasibility in clinical contexts. : Our experiments demonstrated consistent, stable hyperthermia (+7 °C) for 15 min across varying perfusion rates, outperforming conventional closed-loop MRI feedback methods in maintaining temperature stability. The retrospective analysis confirmed that this method is noise-robust and clinically applicable. : This off-line approach to hyperthermia control could simplify the integration of MRgFUS hyperthermia in cancer treatment, reducing costs and logistical barriers. These findings suggest that our method may enable the broader adoption of hyperthermia in radiation therapy, supporting its role as a viable adjuvant treatment in oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817472PMC
http://dx.doi.org/10.3390/cancers17030515DOI Listing

Publication Analysis

Top Keywords

hyperthermia
9
impulse response
8
response function
8
radiation therapy
8
costs logistical
8
green's function
8
acoustic power
8
power settings
8
stable hyperthermia
8
retrospective analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!