The aim of this study was to verify whether the expression of proteins related to the formation of invadopodia, MT1-MMP, cortactin, Tks-4 and Tks-5 is associated with the degree of tumor invasiveness of different types of unicystic ameloblastomas. An immunohistochemical study was performed on 29 unicystic ameloblastoma (UA) samples, 9 conventional ameloblastoma (CAM) samples and 9 dental follicle (DF) samples. The potential for tumor invasiveness was assessed based on the immunoexpression of the following invadopodia-forming proteins: MT1-MMP, cortactin, Tks-4 and Tks5. Mural unicystic ameloblastoma (MUA) showed higher MT1-MMP, cortactin, Tks-4, and Tks-5 immunoexpression than luminal and intra-luminal types. Conventional ameloblastoma exhibited lower MT1-MMP, cortactin, and Tks-5 expression compared to MUA. MUA's cystic capsule neoplastic cells had significantly higher MT1-MMP, cortactin, Tks-4, and Tks-5 expression than lumen cells. Dental follicles showed minimal expression. Neoplastic cells in the cystic capsule of mural unicystic ameloblastomas showed higher invadopodia-related protein expression than lumen and luminal/intraluminal cells, suggesting that proximity to the bone region influences the aggressive behavior of mural unicystic ameloblastomas more compared to other subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818812PMC
http://dx.doi.org/10.3390/ijms26031267DOI Listing

Publication Analysis

Top Keywords

mt1-mmp cortactin
20
cortactin tks-4
16
conventional ameloblastoma
12
tks-4 tks-5
12
unicystic ameloblastomas
12
mural unicystic
12
tumor invasiveness
8
unicystic ameloblastoma
8
higher mt1-mmp
8
tks-5 expression
8

Similar Publications

Background: HNSCC presents a significant health challenge due to its high mortality resulting from treatment resistance and locoregional invasion into critical structures in the head and neck region. Understanding the invasion mechanisms of HNSCC has the potential to guide targeted therapies, improving patient survival. Previously, we demonstrated the involvement of doublecortin like kinase 1 (DCLK1) in regulating HNSCC cell invasion.

View Article and Find Full Text PDF

The aim of this study was to verify whether the expression of proteins related to the formation of invadopodia, MT1-MMP, cortactin, Tks-4 and Tks-5 is associated with the degree of tumor invasiveness of different types of unicystic ameloblastomas. An immunohistochemical study was performed on 29 unicystic ameloblastoma (UA) samples, 9 conventional ameloblastoma (CAM) samples and 9 dental follicle (DF) samples. The potential for tumor invasiveness was assessed based on the immunoexpression of the following invadopodia-forming proteins: MT1-MMP, cortactin, Tks-4 and Tks5.

View Article and Find Full Text PDF

Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a major health concern due to its high mortality from poor treatment responses and locoregional tumor invasion into life sustaining structures in the head and neck. A deeper comprehension of HNSCC invasion mechanisms holds the potential to inform targeted therapies that may enhance patient survival. We previously reported that doublecortin like kinase 1 (DCLK1) regulates invasion of HNSCC cells.

View Article and Find Full Text PDF

Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!