The treatment of bone cancer often necessitates the surgical removal of affected tissues, with artificial implants playing a critical role in replacing lost bone structure. Functionalized implants represent an innovative approach to improve bio-integration and the long-term effectiveness of surgery in treating cancer-damaged bones. In this study, nickel-substituted hydroxyapatite (Ni:HAp) nanoparticles were deposited as thin films using laser pulses in the range of 30,000-60,000. Comprehensive structural, infrared, optical, morphological, surface, and magnetic evaluations were conducted on the synthesized Ni:HAp thin films. The magnetic hysteresis (M-H) loop demonstrated an increase in the saturation magnetization of the films with a higher number of laser pulses. A minimum squareness ratio of 0.7 was observed at 45,000 laser pulses, and the M-H characteristics indicated a shift toward ferromagnetic behavior, achieving the desired thermal response through an alternating magnetic field application within 80 s. Thermogravimetric analysis revealed distinct thermal stability, with the material structure exhibiting 46% degradation at 800 °C. The incorporation of bioactive magnetic nanoparticles in the thin film holds significant promise for magnetic hyperthermia treatment. Using HDOCK simulations, the interactions between ligand molecules and proteins were also explored. Strong binding affinities with a docking score of -67.73 were thus observed. The presence of Ca ions enhances electrostatic interactions, providing valuable insights into the biochemical roles of the ligand in therapeutic applications. Intravenous administration of magnetic nanoparticles, which subsequently aggregate within the tumor tissue, combined with an applied alternating magnetic field, enable targeted heating of the tumor to 45 °C. This focused heating approach selectively targets cancer cells while preserving the surrounding healthy tissue, thereby potentially enhancing the effectiveness of hyperthermia therapy in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817106 | PMC |
http://dx.doi.org/10.3390/ijms26031095 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.
View Article and Find Full Text PDFChemphyschem
March 2025
Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076, Siegen, GERMANY.
Organic-inorganic halocuprates(I) form a promising class of light-emitting materials with high photoluminescence (PL) quantum yield. However, the understanding of their emission properties and the PL mechanism is still limited. Here, we investigate thin films of bis(tetrapropylammonium) hexa-µ-bromo-tetrahedro-tetracuprate(I), [N(C3H7)4]2[Cu4Br6], which has a zero-dimensional (0D) molecular salt structure containing [Cu4Br6]2- ions.
View Article and Find Full Text PDFSci Total Environ
March 2025
SINTEF Ocean AS, Dept. Climate and Environment, Trondheim, Norway.
Seasonal dynamics can vastly influence the natural depletion of oil spilled into the ocean and the Arctic regions are characterized by large seasonal changes, especially in temperature and daylight. To determine the influences of seasonal variation on natural oil depletion processes like dissolution, photooxidation and biodegradation, we deployed thin films of three oils in natural seawater during the Arctic summer and winter in Svalbard, Norway. The extent of oil depletion varied with season and the type of the oil, however, considerable depletion of n-alkanes and polycyclic aromatic compounds were observed during both summer and winter.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Heilongjiang Provincial Key Laboratory of Advanced Quantum Functional Materials and Sensor Devices, Harbin 150001, China. Electronic address:
Optical synaptic devices (OSDs) have neuromorphic vision sensing capability showing great potential in breaking the von Neumann bottleneck and facilitating future artificial vision systems. However, the applications of two-dimensional (2D) material-based OSDs are still impeded by complicated structures, preparation techniques and so on. In this work, we propose a 2D OSD based on BiSe films prepared by a chemical vapor deposition method followed by an in-situ thermal treatment.
View Article and Find Full Text PDFWe report the cosolvency effect of formamidinium lead triiodide (FAPbI) in a mixture of γ-butyrolactone (GBL) and 2-methoxyethanol (2ME), a phenomenon where FAPbI shows higher solubility in the solvent blend than in either alone. We found that FAPbI exhibits 10× higher solubility in 30% 2ME in GBL than in 2ME alone and 40% higher solubility than in GBL alone at 90 °C. This enhanced solubility is attributed to the disruption of the hydrogen bonding network within 2ME, allowing its hydroxyl and ether groups to interact more freely with the solute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!