Expression Patterns of Escape Genes in Turner Syndrome Fibroblasts and Induced Pluripotent Stem Cells.

Int J Mol Sci

Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 133-702, Republic of Korea.

Published: January 2025

Turner syndrome (TS) is an X monosomy-related disorder caused by X chromosome nondisjunction during embryonic development. Patients with TS have only one intact X chromosome, with the other either completely or partially lost. TS affects various tissues, including the liver, kidneys, brain, cardiovascular system, and ovaries. These abnormalities are suggested to involve an altered dosage of escape genes that evade X chromosome inactivation. However, the mechanisms and roles of these escape genes in the TS phenotype remain unclear. We hypothesized that the expression levels of escape genes differ between wild-type (WT) and TS cell lines. In this study, we generated induced pluripotent stem cell (iPSC) lines from WT and TS fibroblasts and examined the expression levels of escape genes in both undifferentiated fibroblasts and reprogrammed iPSCs from WT and TS samples. The reprogrammed WT and TS iPSCs exhibited general characteristics of pluripotency, including the expression of pluripotency markers and the potential to differentiate into all three germ layers. Forty-five escape genes were differentially expressed between the WT and TS cell lines. Among these, five genes (, , , , and ) were suggested to be implicated in the TS phenotype. However, further studies using additional cell lines are necessary to clarify the correlation between TS and escape genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816654PMC
http://dx.doi.org/10.3390/ijms26030975DOI Listing

Publication Analysis

Top Keywords

escape genes
28
cell lines
12
genes
8
turner syndrome
8
induced pluripotent
8
pluripotent stem
8
expression levels
8
levels escape
8
reprogrammed ipscs
8
escape
7

Similar Publications

In vitro study of a siRNA delivery liposome constructed with an ionizable cationic lipid.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Pharmaceutical Engineering, Chemistry and Chemical Engineering, Central South University, Changsha 410083.

Objectives: Small interfering RNA (siRNA) can silence disease-related genes through sequence-specific RNA interference (RNAi). Cationic lipid-based liposomes effectively deliver nucleic acids into the cytoplasm but often exhibit significant toxicity. This study aims to synthesize a novel ionizable lipid, Nε-laruoyl-lysine amide (LKA), from natural amino acids, constructed LKA-based liposomes, and perform physicochemical characterization and cell-based experiments to systematically evaluate the potential of these ionizable lipid-based liposomes for nucleic acid delivery.

View Article and Find Full Text PDF

Although small molecule inhibitors that target the aberrant signaling pathways and molecular defects of chronic lymphocytic leukemia (CLL) result in improved survival benefits vs. traditional chemoimmunotherapy or chemotherapy, treatment resistance may result later, reflecting the intrinsic tumor heterogeneity, persistence of the leukemic clone, and presence of the tumor microenvironment, which supports the survival of the disease clone. Patients with CLL have immune-related abnormalities in T lymphocyte subset composition, immune synapse formation, and other immune dysregulations.

View Article and Find Full Text PDF

Advances in targeting protein S-palmitoylation in tumor immunity and therapy.

Front Oncol

February 2025

Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.

S-palmitoylation is a reversible and dynamic post-translational modification of proteins. A palmitoyl group is covalently attached to a cysteine residue of the protein by a thioester link. It regulates the transcription and expression of downstream target genes and cell signaling, influencing cellular functions.

View Article and Find Full Text PDF

BCL11B is a transcription factor essential for central nervous system development and T-cell differentiation that regulates numerous genes across various pathways. Heterozygous BCL11B defects can lead to a broad spectrum of phenotypes, including neurological disorders with or without immunological features. STX11 encodes a t-SNARE protein crucial for the final fusion of lytic granules with the plasma membrane of NK-cells and CD8 T-cells.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSC) ranks among the most prevalent cancers worldwide, characterized by significant heterogeneity and a complex immune microenvironment. T cell exhaustion is pivotal in the pathogenesis of HNSC, where depleted T cells exhibit reduced proliferative capacity and diminished effector function, facilitating tumor immune escape and subsequent disease progression. A thorough understanding of the primary mechanisms driving T cell depletion within the tumor microenvironment is essential for enhancing the efficacy of immunotherapeutic approaches in HNSC, with profound implications for patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!