The paper describes changes in the structure, morphology, mechanical and thermal properties of porous film samples of poly(4,4'-oxidiphenylene)pyromellitimide prepared as a result of selective destruction of urethane blocks in copolymers composed of pyromellitimide blocks and polyurethane blocks. The initial samples of the new composition of statistical copoly(urethane-imide)s (CoPUIs) were prepared via polycondensation methods using pyromellitic dianhydride (PMDA), 4,4'-oxidyaniline (ODA), 2,4-toluylenediisocyanate (TDI), as well as polycaprolactone (PCL) and poly(1,6-hexanediol/neopentylglycol-alt-adipic acid) (ALT) as monomers. The molar ratio of imide and polyurethane blocks in CoPUI was 10:1. The initial films were heated up to 170 °C to complete the polycondensation processes, after which they were subjected to thermolysis and hydrolysis. The thermolysis (thermal degradation) of copolymers was carried out by heating the initial samples to temperatures of 300 °C or 350 °C. Then, the thermolized films were subjected to chemical degradation in hydrolytic baths containing an aqueous solution of potassium hydroxide. As a result, urethane blocks were destroyed and removed from the polymer. The resulting products practically did not contain polyurethane links and, in chemical composition, were practically identical to poly(4,4'-oxidiphenylene)pyromellitimide. NMR and IR spectroscopy, atomic force microscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis and mechanical properties testing were used to determine the differences in the structure and properties of the initial copolymers and targeted products. The effect of the conditions of destructive processes on the structure, morphology and mechanical properties of the obtained porous polyimide films was determined. From a practical point of view, the final porous films are promising as membranes for filtering aggressive amide solvents at high temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820994PMC
http://dx.doi.org/10.3390/polym17030329DOI Listing

Publication Analysis

Top Keywords

thermolysis hydrolysis
8
structure morphology
8
morphology mechanical
8
properties porous
8
urethane blocks
8
polyurethane blocks
8
initial samples
8
mechanical properties
8
films
5
blocks
5

Similar Publications

The paper describes changes in the structure, morphology, mechanical and thermal properties of porous film samples of poly(4,4'-oxidiphenylene)pyromellitimide prepared as a result of selective destruction of urethane blocks in copolymers composed of pyromellitimide blocks and polyurethane blocks. The initial samples of the new composition of statistical copoly(urethane-imide)s (CoPUIs) were prepared via polycondensation methods using pyromellitic dianhydride (PMDA), 4,4'-oxidyaniline (ODA), 2,4-toluylenediisocyanate (TDI), as well as polycaprolactone (PCL) and poly(1,6-hexanediol/neopentylglycol-alt-adipic acid) (ALT) as monomers. The molar ratio of imide and polyurethane blocks in CoPUI was 10:1.

View Article and Find Full Text PDF

Waste artificial marble pyrolysis and hydrolysis.

Waste Manag

March 2025

Génie Chimique, Polytechnique Montréal, 2500 ch. de Polytechnique Montréal, Québec, Canada. Electronic address:

Artificial marble, a composite material consisting of 40 % (g g) Poly Methyl Methacrylate (PMMA) and 60 % (g g) aluminium hydroxide Al(OH)3, combines the durability and aesthetics of real marble with the lightweight and moldability of plastic. It is the most sought-after synthetic stone in the world, with a production volume of over 1 million t in 2021. However, due to a high level of cross-linking, mechanical recycling of the composite is impossible, while chemical recycling is achievable, yet unprofitable.

View Article and Find Full Text PDF

The synthesis of poly(styrene--maleic anhydride) (SMAnh) and poly(4--butylstyrene--maleic anhydride) (BuSMAnh) macro-RAFT agents was investigated using universal 3,5-dimethylpyrazole dithiocarbamate and stimuli-responsive -(4-pyridinyl)--methyldithiocarbamate RAFT agents. SMAnh/BuSMAnh macro-RAFT agents of targeted molecular weight and narrow molecular weight distribution could be synthesized with intentional variation of the terminal monomer unit, allowing for the assessment of two distinctive macro-R-groups. SMAnh macro-RAFT agents were utilized to mediate the thermally initiated polymerization of -vinylpyrrolidone (NVP), yielding SMAnh--PVP, but with significant thermolysis and hydrolysis of dithiocarbamate ω-chain ends.

View Article and Find Full Text PDF

Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides.

View Article and Find Full Text PDF

The key first step in the oligomerization of monomers is to find an initiator, which is usually done by thermolysis or photolysis. We present a markedly different approach that initiates acid-catalyzed polymerization at the surface of water films or water droplets, which is the reactive phase during a wet-dry cycle in freshwater hot springs associated with subaerial volcanic landmasses. We apply this method to the oligomerization of different nucleic acids, a topic relevant to how it might be possible to go from simple nucleic acid monomers to long-chain polymers, a key step in forming the building blocks of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!