External Li supply reshapes Li deficiency and lifetime limit of batteries.

Nature

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Fudan University, Shanghai, China.

Published: February 2025

Lithium (Li) ions are central to the energy storing functionality of rechargeable batteries. Present technology relies on sophisticated Li-inclusive electrode materials to provide Li ions and exactingly protect them to ensure a decent lifetime. Li-deficient materials are thus excluded from battery design, and the battery fails when active Li ions are consumed. Our study breaks this limit by means of a cell-level Li supply strategy. This involves externally adding an organic Li salt into an assembled cell, which decomposes during cell formation, liberating Li ions and expelling organic ligands as gases. This non-invasive and rapid process preserves cell integrity without necessitating disassembly. We leveraged machine learning to discover such functional salts and identified lithium trifluoromethanesulfinate (LiSOCF) with optimal electrochemical activity, potential, product formation, electrolyte solubility and specific capacity. As a proof-of-concept, we demonstrated a 3.0 V, 1,192 Wh kg Li-free cathode, chromium oxide, in the anode-less cell, as well as an organic sulfurized polyacrylonitrile cathode incorporated in a 388 Wh kg pouch cell with a 440-cycle life. These systems exhibit improved energy density, enhanced sustainability and reduced cost compared with conventional Li-ion batteries. Furthermore, the lifetime of commercial LiFePO batteries was extended by at least an order of magnitude. With repeated external Li supplies, a commercial graphite|LiFePO cell displayed a capacity retention of 96.0% after 11,818 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-08465-yDOI Listing

Publication Analysis

Top Keywords

cell
6
external supply
4
supply reshapes
4
reshapes deficiency
4
deficiency lifetime
4
lifetime limit
4
batteries
4
limit batteries
4
batteries lithium
4
ions
4

Similar Publications

A Structurally Simple Polymer Donor Enables High-Efficiency Organic Solar Cells with Minimal Energy Losses.

Angew Chem Int Ed Engl

March 2025

South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Wushan Road 381, 510640, Guangzhou, CHINA.

Energy loss (Eloss) between optical energy gap (Eg) and open-circuit voltage (eVoc) sets efficiency upper limits for organic solar cells (OSCs). Nevertheless, further breaking the limit of Eloss in OSCs is challenging, especially via structurally simple materials in binary OSCs. Herein, a structurally simple non-halogenated polymer donor, namely PBDCT, is developed for realizing high-efficiency OSCs with record-breaking Eloss.

View Article and Find Full Text PDF

Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.

Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.

View Article and Find Full Text PDF

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

The aim of the study was to determine the test-retest reliability of MMN and LDN recorded to simple speech contrasts in children with listening difficulties. MMN and LDN responses were recorded from Fz and Cz electrodes for a /da/-/ga/ contrast twice within a 10-day period. To extract MMN and LDN, auditory-evoked responses to /ga/ stimuli presented alone were subtracted from the responses to /ga/ presented within an oddball sequence.

View Article and Find Full Text PDF

Joubert syndrome (JS) is a rare neurodevelopmental disorder associated with mutations in genes involved in ciliary function. Germline variants in CPLANE1 have been implicated in JS. In this study, we investigated a family with three adverse pregnancies characterised by fetal malformations consistent with JS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!