Mercury is a highly toxic trace metal that readily biomagnifies in food webs where it is inaccessible to current bioremediation methods. Animals could potentially be engineered to detoxify mercury within their food webs to clean up impacted ecosystems. We demonstrate that invertebrate (Drosophila melanogaster) and vertebrate (Danio rerio) animal models can express organomercurial lyase (MerB) and mercuric reductase (MerA) from Escherichia coli to demethylate methylmercury and remove it from their biomass as volatile elemental mercury. The engineered animals accumulated less than half as much mercury relative to their wild-type counterparts, and a higher proportion of mercury in their tissue was in the form of less bioavailable inorganic mercury. Furthermore, the engineered animals could tolerate higher exposures to methylmercury compared to controls. These findings demonstrate the potential of using engineered animals for bioremediation and may be applied to reduce the burden of methylmercury in impacted ecosystems by disrupting its biomagnification or to treat contaminated organic waste streams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821883PMC
http://dx.doi.org/10.1038/s41467-025-56145-wDOI Listing

Publication Analysis

Top Keywords

engineered animals
12
food webs
8
impacted ecosystems
8
mercury engineered
8
mercury
6
animals
5
methylmercury
4
methylmercury demethylation
4
demethylation volatilization
4
volatilization animals
4

Similar Publications

Background: Immunomagnetic separation is essential for screening pathogenic bacteria to prevent food poisoning. However, free immunomagnetic nanobeads (IMNBs) coexist with IMNB-bacteria conjugates (IBCs) after traditional immunomagnetic separation resulting in the infeasibility for IMNBs on IBCs to further act as signal label in bacterial detection. Although we have demonstrated that magnetophoretic separation at a high flowrate could separate IBCs from IMNBs, partial IMNBs were still found with IBCs due to chaotic flows and resulted in inevitable interferences.

View Article and Find Full Text PDF

Background: Ambient Mass Spectrometry (AMS) encompasses a group of techniques that have emerged as powerful strategies for direct, in-situ and high-throughput analysis, also in compliance with the principles of green analytical chemistry. Swab Touch Spray-Mass Spectrometry (Swab TS-MS) is a home-made AMS technique that involves the use of a medical swab as sampling tool and electrospray probe. To date, Swab TS-MS has been applied only for the analysis of small molecules, especially in forensic and medical fields, leaving the analysis of peptides and proteins still unexplored.

View Article and Find Full Text PDF

Fc-mediated immune stimulating, pro-inflammatory and antitumor effects of anti-HER2 IgE against HER2-expressing and trastuzumab-resistant tumors.

J Immunother Cancer

March 2025

St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK

Background: Anti-human epidermal growth factor receptor 2 (HER2) IgG1-based antibody therapies significantly improve cancer prognosis, yet intrinsic or acquired resistance to fragment antigen-binding (Fab)-mediated direct effects commonly occurs. Most resistant tumors retain antigen expression and therefore remain potentially targetable with anti-HER2 therapies that promote immune-mediated responses. Tumor-antigen-specific IgE class antibodies can mediate powerful immune cell-mediated effects against different cancers and have been shown to activate IgE Fc receptor-expressing monocytes.

View Article and Find Full Text PDF

Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.

View Article and Find Full Text PDF

In vitro study of a siRNA delivery liposome constructed with an ionizable cationic lipid.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Pharmaceutical Engineering, Chemistry and Chemical Engineering, Central South University, Changsha 410083.

Objectives: Small interfering RNA (siRNA) can silence disease-related genes through sequence-specific RNA interference (RNAi). Cationic lipid-based liposomes effectively deliver nucleic acids into the cytoplasm but often exhibit significant toxicity. This study aims to synthesize a novel ionizable lipid, Nε-laruoyl-lysine amide (LKA), from natural amino acids, constructed LKA-based liposomes, and perform physicochemical characterization and cell-based experiments to systematically evaluate the potential of these ionizable lipid-based liposomes for nucleic acid delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!