Purpose: Spark-discharged anodic oxidation coating on commercially pure titanium (SAc.p.Ti) has been shown to promote bone conduction and bone matrix mineralization during new bone formation. This study hypothesized that the combination of SAc.p.Ti with dental pulp stem cells (DPSCs) would enhance new bone formation. The objective was to evaluate the effect of this combination in a rat bone defect model.
Methods: DPSCs were isolated from Sprague-Dawley (SD) rat incisors and cultured. Calvarial bone defects were created in SD rats, followed by transplantation of commercially pure titanium (c.p.Ti), SAc.p.Ti, or SAc.p.Ti combined with DPSCs. Bone formation was assessed using micro-computed tomography (micro-CT). Toluidine blue O staining was employed to evaluate bone-implant contact and the newly formed bone area. Hematoxylin-eosin (HE) staining was performed to identify osteoblast-like cells.
Results: Micro-CT analysis revealed hard tissue formation on the surface of SAc.p.Ti. Toluidine blue O staining showed significantly greater bone-implant contact and newly formed bone area in the SAc.p.Ti/DPSC group compared to the c.p.Ti and SAc.p.Ti groups. HE staining confirmed the presence of osteoblast-like cells at the defect margins, with evidence of new bone formation on the surface of SAc.p.Ti and in the SAc.p.Ti/DPSC groups.
Conclusions: The combination of SAc.p.Ti and DPSCs presents a promising strategy for promoting new bone formation in rat calvarial defect model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2186/jpr.JPR_D_24_00176 | DOI Listing |
Chest
March 2025
Children's Healthcare of Atlanta, Atlanta, GA. Electronic address:
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China.
Objectives: Osteoporosis is characterized by decreased bone mass and damaged bone microstructure, often leading to fragility fractures. Low bone mineral density is a key risk factor for fractures. Serum cystatin C (CysC), an endogenous marker of glomerular filtration rate, is negatively correlated with bone mineral density and may be a potential risk factor for osteoporosis.
View Article and Find Full Text PDFEur J Dent
March 2025
Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Objective: The goal is to analyze the osteogenesis potential of polymethylmethacrylate (PMMA)-hydroxyapatite (HA) and stem cells from human exfoliated deciduous teeth (SHED) as a biomaterial candidate for alveolar bone defect therapy through a bioinformatic approach within an study.
Materials And Methods: Three-dimensional (3D) ligand structures consisting of HA, PMMA, and target proteins of SHED were obtained from the PubChem database. STITCH was used for SHED target protein analysis, STRING was utilized for analysis and visualization of protein pathways related to osteogenesis, PASS Online was employed to predict biological functions supporting osteogenesis potential, PyRx 0.
Eur J Dent
March 2025
Department of Dental Material, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia.
Objective: Bone grafts derived from natural hydroxyapatite (HA) are increasingly being explored because they are more economical in terms of production costs compared with commercial HA. HA can be obtained from local cattle slaughter waste in Aceh, Indonesia, which has not been widely studied for its potential for dental applications. This study examines the synthesis and characterization of bovine HA (BHA) derived from Aceh cattle femur through calcination for applications in dentistry.
View Article and Find Full Text PDFJ Adv Res
March 2025
Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China. Electronic address:
Introduction: Bone fracture is increasing in patients with type 2 diabetes mellitus (T2DM) due to skeletal fragility. Most antidiabetics are expected to reduce the incidence of fracture in patients with T2DM, however the results are disappointing. Metformin and GLP-1 receptor agonists have a neutral or minor positive effect in reducing fractures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!