SARS-CoV-2 emerged rapidly as a pandemic, leading to the urgent development and authorization for the use of several vaccines, with questions relating to immunogenicity in previously infected people or to virus variants. As such, we sought to determine the humoral and cellular immune response of healthy adults to distinct SARS-CoV-2 variants upon AZD1222/COVISHIELD vaccination, using chemiluminescence (CMIA), neutralizing antibody (PRNT) and analysis of activation-induced marker (AIM) by flow cytometry, respectively. We enrolled 75 volunteers, including 26 individuals previously infected with SARS-CoV-2. Our findings demonstrated that AZD1222 vaccine induced increased levels of SARS-CoV-2-specific antibodies after two-dose vaccination scheme, as detected by CMIA (mean = 49 BAU/mL to 743 BAU/mL) and PRNT (GMT = 3, 95 % CI 2-4, to 19, 11-34). After vaccination, all volunteers presented detectable antibodies by CMIA while only 64 % presented positive PRNT. Seroconversion rates were 91 % and 48 % by CMIA and 59 % by PRNT after the first and second dose, respectively. The PRNT to Delta variant demonstrated lower titers as compared to Wuhan-like and a seroconversion of 57 %. Although by CMIA all volunteers were classified as high responders, some volunteers showed no response by PRNT and AIM. In general, previously infected volunteers had higher post-vaccination antibody titers after each dose. CD4 T cell response was generally higher than CD8 T cells for all variants. Overall, we observed that AZD1222 vaccination induced cross-reactivity to SARS-CoV-2 variants, in both cellular and humoral responses. During volunteer follow-up, we observed that the elevated antibody titers are lasting and were incremented by the first booster. In conclusion, our findings showed that AZD1222 vaccine was able to induce a robust immune response upon primary immunization, with cross-reactivity for the Delta VOC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2025.126785 | DOI Listing |
Rev Med Virol
March 2025
Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA.
SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.
View Article and Find Full Text PDFRev Mal Respir
March 2025
Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), U 1045, Université de Bordeaux, 33604 Pessac, France; Groupe RESPIRenT, France. Electronic address:
J Gastroenterol Hepatol
March 2025
Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
This review provides an in-depth exploration of the evolving role of immunotherapy in gastrointestinal (GI) cancers, with a particular focus on immune checkpoint inhibitors (ICIs) and their associated predictive biomarkers. We present a detailed analysis of established biomarkers, such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and the tumor microenvironment (TME), as well as emerging biomarkers, including gut microbiota and Epstein-Barr virus (EBV). The predictive value of these biomarkers in guiding clinical decision-making and optimizing immunotherapy outcomes is thoroughly discussed.
View Article and Find Full Text PDFTrop Med Int Health
March 2025
UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
Background: To demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.
Methods: Using data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.
Results: Spatial patterns in population immunity to SARS-CoV-2 varied across the DR.
Anal Chim Acta
May 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:
Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!