Thermally Activated Delayed Fluorescence-Based Near-Infrared-II Luminescence and Controlled Size Growth of Silver Nanoclusters.

ACS Nano

MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.

Published: February 2025

Due to the significant relationships between structure and properties, the controlled construction of atomically precise metal clusters presents both a formidable challenge and great importance. The innovative synthesis of well-defined silver nanoclusters with near-infrared II (NIR-II) luminescent properties may inspire further exploration of functional metal nanoclusters for bioimaging applications. In this study, we employed the multidentate chelating nitrogen ligand 3,5-di(2-pyridyl)pyrazole (Hbpypz) to construct three unprecedented silver nanoclusters: [Ag(bpypz)] (), [Ag(bpypz)] (), and [Ag(bpypz)] (). Single-crystal X-ray analysis indicated that these cluster structures stem from Ag units, exhibiting cluster-of-cluster configurations. By modulating the stoichiometry of the chelating ligand and silver centers, we achieved controlled size growth and reversible cluster-to-cluster conversions among these silver nanoclusters. Notably, the nanocluster exhibits an interesting thermally activated delayed fluorescence (TADF) based luminescence in the second near-infrared (NIR-II) region and demonstrates high catalytic efficiency in the oxidative coupling of benzylamines via a singlet oxygen (O) oxidation mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c16160DOI Listing

Publication Analysis

Top Keywords

silver nanoclusters
16
thermally activated
8
activated delayed
8
controlled size
8
size growth
8
near-infrared nir-ii
8
[agbpypz] [agbpypz]
8
silver
5
nanoclusters
5
delayed fluorescence-based
4

Similar Publications

Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag per GC base pair induces a one-base shift of one strand relative to the other. This results in a ds nucleic acid-Ag conjugate consisting of alternating CC and GG base pairs coordinated by silver ions. The proposed organization of the conjugate is supported by the results of our Quantum Mechanical (QM) and Molecular Mechanics (MMs) calculations.

View Article and Find Full Text PDF

Advanced Logic Computing and Hybrid Crypto-Steganography for Molecular Information Coding Using Gold/Silver Nanoclusters.

ACS Appl Mater Interfaces

March 2025

School of Chemical Science and Engineering, Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.

In the domain of digital data exchange, ensuring information security is the supreme demand for data storage and transmission. Interlinking cryptographic techniques with steganographic principles can enhance data confidentiality. However, there have been no reports thus far to develop molecular platforms for hybrid crypto-steganography systems.

View Article and Find Full Text PDF

Revisiting Anti-Stokes Emission Features of DNA-Stabilized Silver Nanoclusters.

ACS Omega

March 2025

Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.

DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of fluorophores with interesting photophysical properties. They are capable of generating anti-Stokes fluorescence upon excitation with near-infrared lasers. The anti-Stokes fluorescence has previously been speculated to be either the result of consecutive photon absorption (upconversion) or hot band absorption (HBA).

View Article and Find Full Text PDF

Near-Infrared Phosphorescent Silver Nanoclusters/Polyethylenimine Nanocomposites for Photothermal Conversion.

ACS Appl Mater Interfaces

March 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Emerging as a promising functional material, metal nanoclusters that emit near-infrared (NIR) radiation have garnered significant attention due to their distinctive properties. Nonetheless, the rational design of NIR-emissive metal nanoclusters still faces substantial challenges. Herein, we demonstrate a self-assembly strategy for constructing NIR-emissive nanocomposites (abbreviated as ) using water-soluble Ag-NCs (Ag(mba), where Hmba = 2-mercaptobenzoic acid) and branched polyethylenimine (PEI) ( = 750,000).

View Article and Find Full Text PDF

Metal nanoclusters (NCs) exhibit potential as catalysts for electrochemical studies, providing atomic-level insights into mechanisms. However, it remains elusive to construct an integrated catalyst with a molecular-level understanding of its mechanism, especially in silver cluster assemblies. In this study, we have shown that atomically precise Ag cluster assemblies Ag-py, Ag-pyz, Ag-bpy, Ag-bpa, Ag-azopy, (where Ag = secondary building unit, Py = pyridine, pyz = pyrazine, bpy = 4,4'-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, and azopy = 4,4'-azopyridine) serve as paradigms for demonstrating the hydrogen evolution reaction (HER), where the catalytic activity is fine-tuned using two functional units: the cluster core and the linkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!