Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-025-03857-x | DOI Listing |
Drug Des Devel Ther
March 2025
Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China.
Background: KCNH2 encodes the hERG potassium channel, which is associated with drug-induced long QT syndrome. Arsenic trioxide (ATO) is an effective therapeutic agent for acute promyelocytic leukemia; however, its long-term use can lead to cardiotoxicity, particularly in cases of acquired long QT syndrome (acLQTS), which may result in torsade de pointes (TdP). Therefore, it is essential to comprehend the mechanisms behind acLQTS and to develop effective preventive and therapeutic strategies.
View Article and Find Full Text PDFLung Cancer
February 2025
Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore; Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore.
Background: The predictive value of PD-L1 to select patients for immunotherapy in resectable NSCLC remains imprecise, confounded by different assays used across trials and intra-tumoural heterogeneity (ITH). We sought to compare the concordance between 3 PD-L1 antibodies stratified by EGFR mutation status, evaluate ITH and implications on survival outcomes.
Methods: Tissue microarrays were constructed from stage IA-IIIA NSCLC with 3 tumour cores per patient.
Appl Biochem Biotechnol
February 2025
Department of Pathology, The Ninth Hospital of Xi'an, 710054, Xi'an, Shaanxi, People's Republic of China.
This study aimed to investigate how Tanshinone IIA (Tan IIA) affects gastric cancer cell (MGC803) proliferation under anaerobic conditions, which are linked to drug resistance and tumor growth. The proliferation of MGC803 cells under both aerobic and anaerobic conditions in response to Tan IIA was assessed using the Cell Counting Kit-8 (CCK-8) assay. To elucidate the molecular mechanisms underlying these effects, proteomics analysis was performed following treatment with 50 µmol/L Tan IIA, focusing on alterations in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
February 2025
Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!