The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health. This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4081/ejtm.2025.13690 | DOI Listing |
Neuroscience
March 2025
Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India. Electronic address:
Billions of microorganisms inhabit the human gut and maintain overall health. Recent research has revealed the intricate interaction between the brain and gut microbiota through the microbiota-gut-brain axis (MGBA) and its effect on neurodegenerative disorders (NDDs). Alterations in the gut microbiota, known as gut dysbiosis, are linked to the development and progression of several NDDs.
View Article and Find Full Text PDFHorm Metab Res
March 2025
Faculty of Pharmaceutical Sciences, Amrapali University, Haldwani, India.
The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease.
View Article and Find Full Text PDFJ Immunol
March 2025
INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.
View Article and Find Full Text PDFAging Dis
March 2025
First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Recent advances in microbial pathogen research have highlighted the potential of gut microbe-based microbial medicine. One of the most extensively studied biological pathways is the gut-brain axis, which has been shown to reverse neurological disorders. Evidence from animal-based studies of dysbiosis suggest complex behavioral changes, such as alterations in sociability and anxiety, can be modulated through gut microbiota.
View Article and Find Full Text PDFCells
March 2025
Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA.
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!