Purpose: Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells contributes to the epiretinal membrane development in proliferative vitreoretinopathy (PVR). This study aimed at investigating changes in mitochondrial function during EMT in PVR.
Methods: Transmission electron microscopy (TEM) was utilized to examine the mitochondrial morphology in human PVR epiretinal membranes and retinal pigment epithelium of human donor eyes. Utilizing TGF-β1 induced EMT in ARPE-19 cells as an model, we assessed mitochondrial morphology using transmission electron microscopy (TEM), evaluated mitochondrial function through various assays including detection and analysis of mitochondrial membrane potential (MMP), mitochondrial deoxyribonucleic acid (mtDNA), reactive oxygen species (ROS), ATP, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR). RNA sequencing was performed to identify differentially expressed genes (DEGs) related to mitochondrial function and PVR pathogenesis.
Results: Mitochondrial morphological damage was observed in human PVR epiretinal membranes. TGF-β1 treatment led to morphological changes in mitochondria, increased oxidative stress, mitochondrial membrane depolarization, and reduction in mtDNA, mitochondrial respiration, and ATP production, indicating mitochondrial dysfunction in EMT ARPE-19 cells. Furthermore, RNA sequencing data highlighted the dysfunction, showing downregulation of mitochondria-related pathways and mitochondrial transcription factor A (TFAM), crucial for mtDNA maintenance.
Conclusion: Our findings indicated that TGF-β1 treatment induced mitochondrial dysfunction in RPE cells during EMT, providing insights into the molecular mechanisms of PVR development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02713683.2025.2464783 | DOI Listing |
JAMA Cardiol
March 2025
Department of Cardiovascular Medicine and Section on Geriatrics and Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
Importance: Excess body fat plays a pivotal role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). HU6 is a novel, controlled metabolic accelerator that enhances mitochondrial uncoupling resulting in increased metabolism and fat-specific weight loss.
Objective: To assess efficacy and safety of HU6 in reducing body weight, improving peak volume of oxygen consumption (VO2) and body composition among patients with obesity-related HFpEF.
Br Poult Sci
March 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China.
1. A study was conducted to investigate the effect of spermidine on cuproptosis in granulosa cells of goose ovarian follicles. Granulosa cells from F2-F5 grade follicles of Sichuan white geese were isolated and cultured.
View Article and Find Full Text PDFAging Dis
February 2025
Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
Studies have linked inhalation anesthesia and surgery to increased cognitive impairment, particularly in the elderly. Our previous research showed that isoflurane, but not desflurane, affected cognitive function in mice by modulating cyclophilin D (CypD), a key regulator of the mitochondrial permeability transition pore (mPTP) and mitochondrial function. Both anesthetics metabolize into trifluoroacetic acid (TFA), which is associated with cognitive deficits.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis.
View Article and Find Full Text PDFChemistry
March 2025
Northwestern Polytechnical University, Institute of Medical Research, 127 West Youyi Road, 710072, Xi'an, CHINA.
The G-quadruplex (G4) is an important diagnostic and therapeutic target in cancers, but the development of theranostic probes for subcellular G4s remains challenging. In this work, we report three G4-targeted theranostic probes by conjugating a pyridostatin-derived G4 ligand to G4-specific iridium(III) complexes with desirable photophysical properties. These probes showed specifically enhanced luminescence to mitochondrial G4 in triple negative breast cancer (TNBC) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!