Elevated glucocorticoid levels with reduced glucocorticoid responsiveness have been reported in chronic inflammatory conditions. Activation of neurons in the nucleus of the solitary tract by transcutaneous auricular vagus nerve stimulation (taVNS) may activate inhibitory pathways projecting to the hypothalamic paraventricular nucleus (PVN), thus inhibiting corticotropin-releasing hormone (CRH) release and improving glucocorticoid dysfunction in chronic inflammatory conditions. Healthy adults (n = 12) participated in experimental (taVNS) and control (sham-taVNS) sessions at least 4 days apart. A 30-min baseline recording was followed by 30 min of taVNS or sham-taVNS and 40 min of recovery. Ten minutes into taVNS or sham-taVNS, a mental arithmetic stress test (MAST) was conducted for 15 min. The MAST increased heart rate, low frequency (LF) heart rate variability (HRV), and the LF to high frequency ratio of HRV, confirming sympathetic activation. Salivary cortisol levels during the MAST were lower during taVNS (49.5 ± 48.0% from baseline; mean ± SD) compared to sham-taVNS (106.0 ± 81.1% from baseline; mean ± SD; p < 0.05). In a psoriasis patient, daily taVNS for 3 months reduced diurnal salivary cortisol levels from 58.2 ± 35.2 (ng/mL)*h (mean ± SD) to 34.9 ± 13.8 (ng/mL)*h (mean ± SD). While it is possible that taVNS inhibited CRH-releasing neurons in the PVN, our study design did not allow to confirm this potential mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815478 | PMC |
http://dx.doi.org/10.14814/phy2.70251 | DOI Listing |
Skin Therapy Lett
March 2025
Center for Clinical Studies, Webster, TX, USA.
Psoriatic arthritis (PsA) is a chronic, inflammatory disease with heterogeneous clinical features. The pathogenesis of PsA involves a complex interplay of genetic, immunologic, and environmental factors, leading to the activation of the immune system and subsequent inflammation. Over the past decade, the understanding of the immune mechanisms underlying PsA has advanced significantly, particularly regarding the role of the interleukin-23/T helper 17 pathway in the disease process.
View Article and Find Full Text PDFInflamm Bowel Dis
March 2025
Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
J Osteopath Med
March 2025
Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
Context: Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition.
View Article and Find Full Text PDFLiver fibrosis is a global health problem. IL-17A has proven profibrogenic properties in liver disease making it an interesting therapeutic target. IL-17A is regulated by RORγt and produced by Th17 CD4+ and γδ-T cells.
View Article and Find Full Text PDFSci Transl Med
March 2025
Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARS because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!