Recently, the role of T cells in the pathology of α-synuclein (αS)-mediated neurodegenerative disorders called synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy, has attracted increasing attention. Although the existence of αS-specific T cells and the immunogenicity of the post-translationally modified αS fragment have been reported in PD and DLB, the key cellular subset associated with disease progression and its induction mechanism remain largely unknown.Peripheral blood mononuclear cells (PBMCs) from synucleinopathy patients and healthy controls were cultured in the presence of the αS peptide pools. Cytokine analysis using culture supernatants revealed that C-terminal αS peptides with a phosphorylated serine 129 residue (pS129), a feature of pathological αS aggregates, promoted the production of IL-17A, IL-17F, IL-22, IFN-γ and IL-13 in PD patients compared with that in controls. In pS129 peptide-reactive PD cases, Ki67 expression was increased in CD4 T cells but not in CD8 T cells, and intracellular cytokine staining assay revealed the existence of pS129 peptide-specific Th1 and Th17 cells. The pS129 peptide-specific Th17 responses, but not Th1 responses, demonstrated a positive correlation with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III scores. A similar correlation was observed for IL-17A levels in the culture supernatant of PBMCs from PD patients with disease duration < 10 years. Interestingly, enhanced Th17 responses to pS129 peptides were uniquely found in PD patients among the synucleinopathies, suggesting that Th17 responses are amplified by certain mechanisms in PD patients. To investigate such mechanisms, we analyzed Th17-inducible capacity of αS-exposed dendritic cells (DCs). In vitro stimulation with αS aggregates generated Th17-inducible DCs with IL-6 and IL-23 production through the signaling of TLR4 and spliced X-box binding protein-1 (XBP1s). In fact, the levels of IL-6 and IL-23 in plasma, and the XBP1s ratio in type 2 conventional DCs were increased in PD patients compared with those in controls.Here, we propose the importance of αS-specific Th17 responses in the progression of PD and the underlying mechanisms inducing Th17 responses. These findings may provide novel therapeutic strategies to prevent disease development through the suppression of TLR4-XBP1s-IL-23 signaling in DCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816547PMC
http://dx.doi.org/10.1186/s12974-025-03359-wDOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
th17 responses
8
ps129 peptide-specific
8
cells
6
disease
5
α-synuclein orchestrates
4
orchestrates th17
4
responses antigen
4
antigen adjuvant
4
adjuvant parkinson's
4

Similar Publications

Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective.

Cells

February 2025

Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.

Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries.

View Article and Find Full Text PDF

Parkinson's disease (PD) represents a growing challenge to global health, as it involves millions of people. The high grade of disability is due to the loss of dopaminergic neuron activity, and levodopa is the gold-standard therapy used to restore dopamine in the dopamine-denervated regions. Another therapeutic approach is the use of A adenosine receptor antagonists and, among them, istradefylline is the only one currently approved for therapy in association with levodopa.

View Article and Find Full Text PDF

Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease.

View Article and Find Full Text PDF

Patterning effects of FGF17 and cAMP on generation of dopaminergic progenitors for cell replacement therapy in Parkinson's disease.

Stem Cells

March 2025

Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.

Cell replacement therapies using human pluripotent stem cell-derived ventral midbrain (VM) dopaminergic (DA) progenitors are currently in clinical trials for treatment of Parkinson's disease (PD). Recapitulating developmental patterning cues, such as fibroblast growth factor 8 (FGF8), secreted at the midbrain-hindbrain boundary (MHB), is critical for the in vitro production of authentic VM DA progenitors. Here, we explored the application of alternative MHB-secreted FGF-family members, FGF17 and FGF18, for VM DA progenitor patterning.

View Article and Find Full Text PDF

Depression is a common comorbidity in Parkinson's disease (PD), significantly reducing patients' quality of life. This mini-review examines pharmacological and nonpharmacological therapies for managing depression in PD, analyzing their benefits, and limitations. Pharmacological options include tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), levodopa, dopaminergic agonists, and monoamine oxidase B inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!