Assessment of compressive strength of eco-concrete reinforced using machine learning tools.

Sci Rep

School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic, PO Box 33349, Isa Town, Bahrain.

Published: February 2025

Predicting the compressive strength of Compressed Earth Blocks (CEB) is a challenging task due to the nonlinear relationships among their diverse components, including cement, clay, sand, silt, and fibers. This study employed PyCaret, an automated machine learning platform, to address this complexity by developing and evaluating predictive models. The analysis demonstrated that fiber content exhibited a strong positive correlation with cement content, with a correlation coefficient of 0.9444, indicating a significant influence on compressive strength. Multiple machine learning algorithms were tested using metrics such as the coefficient of determination (R), root mean square error (RMSE), and mean absolute error (MAE) to assess model performance. Among these, the Extra Trees Regressor showed the best predictive capability with R = 0.9444 (highly accurate predictions), RMSE = 0.4909 (low variability in prediction errors) and MAE = 0.1899 (minimal average prediction error). The results confirm that PyCaret effectively automates the machine learning workflow, enabling accurate modeling of complex material behavior. The Extra Trees Regressor outperformed other algorithms due to its ability to handle highly nonlinear and multivariate datasets, making it particularly well-suited for predicting the compressive strength of CEB. This approach offers a significant advantage over traditional laboratory testing, which is time-consuming and resource-intensive. By incorporating machine learning techniques, especially using PyCaret's streamlined processes, the prediction of CEB strength becomes more efficient and reliable, providing a practical tool for engineers and researchers in material science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814303PMC
http://dx.doi.org/10.1038/s41598-025-89530-yDOI Listing

Publication Analysis

Top Keywords

machine learning
20
compressive strength
16
predicting compressive
8
extra trees
8
trees regressor
8
strength
5
machine
5
learning
5
assessment compressive
4
strength eco-concrete
4

Similar Publications

Background: Hypertension is a major global health issue and a significant modifiable risk factor for cardiovascular diseases, contributing to a substantial socioeconomic burden due to its high prevalence. In China, particularly among populations living near desert regions, hypertension is even more prevalent due to unique environmental and lifestyle conditions, exacerbating the disease burden in these areas, underscoring the urgent need for effective early detection and intervention strategies.

Objective: This study aims to develop, calibrate, and prospectively validate a 2-year hypertension risk prediction model by using large-scale health examination data collected from populations residing in 4 regions surrounding the Taklamakan Desert of northwest China.

View Article and Find Full Text PDF

Of rats and robots: A mutual learning paradigm.

J Exp Anal Behav

March 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, Turkey.

Robots are increasingly used alongside Skinner boxes to train animals in operant conditioning tasks. Similarly, animals are being employed in artificial intelligence research to train various algorithms. However, both types of experiments rely on unidirectional learning, where one partner-the animal or the robot-acts as the teacher and the other as the student.

View Article and Find Full Text PDF

Co-crystal engineering is of interest for many applications in pharmaceutical, chemistry and material fields, but rational design of co-crystals is still challenging. Although artificial intelligence has brought major changes in the decision-making process for materials design, yet limitations in generalization and mechanistic understanding remain. Herein, we sought to improve prediction of co-crystal by combining mechanistic thermodynamic modeling with machine learning.

View Article and Find Full Text PDF

Patients with hand dysfunction require joint rehabilitation for functional restoration, and wearable electronics can provide physical signals to assess and guide the process. However, most wearable electronics are susceptible to failure under large deformations owing to instability in the layered structure, thereby weakening signal reliability. Herein, an in-situ self-welding strategy that uses dynamic hydrogen bonds at interfaces to integrate conductive elastomer layers into highly robust electronics is proposed.

View Article and Find Full Text PDF

Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!