Di(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers, which has harmful biological effects and poses a serious threat to ecological environments and human health. In this study, a novel strain Aspergillus sydowii W1 was reported with DEHP degradation ability. Under the optimal conditions of 35°C and pH 6.0, strain W1 degraded 68.48 % of 50 mg/L DEHP within 120 h, while the biochar immobilized W1 can enhance the removal efficiency by 15.33 %. The immobilized W1 also showed excellent performance in DEHP polluted wastewater with concentration of 50 mg/L, and its removal rate reached 85.72 % within 144 h. Interestingly, the fermented broth of strain W1 has the activity of hydrolyzing DEHP, and the highest value of crude enzyme activity was at 35°C and pH 8.5. In addition, nine metabolic products of DEHP degraded by strain W1 were identified by HPLC-MS/MS and GC-MS. In combination with these intermediates and related enzymatic analysis, two possible catabolism pathways of DEHP degradation by strain W1 were concluded. This study confirmed that immobilized W1 is an effective composite for removing DEHP in water environment and also strengthened our understanding on the DEHP degradation process of A. sydowii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137533 | DOI Listing |
FASEB J
March 2025
Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
Di-(2-ethylhexyl)-phthalate (DEHP) is a common endocrine disruptor that causes very serious environmental pollution. Recent studies have described that DEHP exerts detrimental effects on key processes of placental development, including implantation, differentiation, invasion, and angiogenesis. However, its effects on the proliferation of placental trophoblasts and related regulatory mechanisms remain elusive.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
This study investigates the complex dynamics of additive release from microplastics in aquatic environments under natural ultraviolet (UV) radiation, which is critical for assessing ecotoxicological impacts and developing pollution remediation strategies. We focused on release kinetics of additives (Dimethyl phthalate (DMP), Dibutyl phthalate (DBP), Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Decabromodiphenyl ether (BDE-209)) from polyvinyl chloride (PVC), polyethylene (PE), and acrylonitrile-butadiene-styrene (ABS) microplastics exposed to UV light, exploring the interplay between additive release, photodegradation, and microplastic aging. Initial results showed a consistent release pattern, but under UV exposure, the release became more complex due to additive degradation and changes in the microplastics' structure.
View Article and Find Full Text PDFBMC Biol
February 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Background: Environmental endocrine disruptor Di (2-ethylhexyl) phthalate (DEHP) widely affects the health of human and animals including the reproductive system. However, there are few studies on the protective strategies for the maternal DEHP exposure on follicular development of offspring. In the present study, we established a model of lactation female mice exposed to DEHP and reported the effects and potential mechanism of melatonin on the follicular development of offspring.
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China. Electronic address:
Di(2-ethylhexyl) phthalate (DEHP) is recognised as a pollutant with multiple health risks. In this study, multi-omics approaches were used to examine the alterations in immunity, gut microbiota and metabolome, and liver transcriptome in the rats with DEHP-induced subacute liver injury. Following short-term subacute DEHP exposure, the rats exhibited decreased body weight, increased liver weight, impaired liver function and immunity, and signs of liver injury.
View Article and Find Full Text PDFInt J Biol Sci
February 2025
Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer, and human exposure to phthalates is a major health concern. DEHP, which is widely recognized as an endocrine disruptor, is associated with an increased risk of several diseases, including breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, and metastasis is the leading cause of TNBC-related mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!