Background: COVID-19 continues to show long-term impacts on our health. Limited effective immune-mediated antiviral drugs have been launched.
Methods: We conducted a Mendelian randomization (MR) and colocalization analysis using 26,597 single-cell expression quantitative trait loci (sc-eQTL) to proxy effects of expressions of 16,597 genes in 14 peripheral blood immune cells and tested them against four COVID-19 outcomes from COVID-19 Genetic Housing Initiative GWAS meta-analysis Round 7. We also carried out additional validations including colocalization, linkage disequilibrium check and host-pathogen interactome predictions. We integrated MR findings with clinical trial evidence from several drug gene related databases to identify drugs with repurposing potential. Finally, we developed a tier system and identified immune-cell-based prioritized drug targets for COVID-19.
Findings: We identified 132 putative causal genes in 14 immune cells (343 MR associations) for COVID-19, with 58 genes that were not reported previously. 145 (73%) gene-COVID-19 pairs showed effects on COVID-19 in only one immune cell type, which implied widespread immune-cell specific effects. For pathway analyses, we found the putative causal genes were enriched in natural killer (NK) recruiting cells but de-enriched in NK cells. Using a deep learning model, we found 107 (81%) of the putative causal genes (41 novel genes) were predicted to interact with SARS-COV-2 proteins. Integrating the above evidence with drug trial information, we developed a tier system and prioritized 37 drug targets for COVID-19.
Interpretation: Our study showcased the central role of immune-mediated regulatory mechanisms for COVID-19 and prioritized drug targets that might inform interventions for viral infectious diseases.
Funding: This work was supported by grants from the National Key Research and Development Program of China (2022YFC2505203).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867302 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2025.105596 | DOI Listing |
J Prev Alzheimers Dis
March 2025
Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: The swift rise in the prevalence of Alzheimer's disease (AD) alongside its significant societal and economic impact has created a pressing demand for effective interventions and treatments. However, there are no available treatments that can modify the progression of the disease.
Methods: Eight AD brain tissues datasets and three blood datasets were obtained.
J Appl Microbiol
March 2025
Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia.
Aims: Mycobacterium tuberculosis (Mtb) remains a major global health challenge, particularly due to increasing drug resistance. Beyond the well-characterized mutations, the mechanisms involved in driving resistance appear to be more complex. This study investigated the differential gene expression of Ethiopian drug-resistant Mtb sub-lineage 4.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. This study aimed to explore the role of hsa-miR-101-3p in HCC pathogenesis by identifying key genes and pathways. A comprehensive bioinformatics analysis revealed twelve hub genes (ETNK1, BICRA, IL1R1, KDM3A, ARID2, GSK3β, EZH2, NOTCH1, SMARCA4, FOS, CREB1, and CASP3) and highlighted their involvement in crucial oncogenic pathways, including PI3K/Akt, mTOR, MAPK, and TGF-β.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India. Electronic address:
Background: Cancer remains an awful challenge, despite years of targeting proteins to control its relentless growth and spread. Fungal metabolites, a treasure of natural chemicals, offer a glimmer of hope. Telomeres, the cellular "caps," are a focal point in cancer research.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Department of Bioinformatics, Pharmacogenomics and CADD Lab, Alagappa University, Karaikudi, Tamil Nadu, India. Electronic address:
Hypertension is the foremost modifiable risk factor for cardiovascular and renal diseases, and overall mortality on a global scale. Genetic variants have the potential to alter an individual's drug responses. In the present study, we employed a comprehensive computational analysis to evaluate the structural and functional implications of deleterious missense variants to examine the influence of RAAS genes such as AT1R, AT2R, and MasR on susceptibility to hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!