Diabetic nephropathy (DN) is characterized by glomerular basement membrane (GBM) thickening, primarily due to the abnormal accumulation of collagen type IV (COL4) in the extracellular matrix (ECM) of podocytes. Podocytes endocytosis is crucial for maintaining COL4 balance and GBM integrity. Previous studies have shown that G protein-coupled receptor 107 (GPR107) facilitates clathrin-dependent transferrin internalization and recycling in murine embryonic fibroblast cells. Therefore, the aim of the study is to investigate the role of GPR107 in regulating COL4 balance within the podocytes ECM and its potential as a therapeutic target for DN. Here, we found a significant decrease in GPR107 expression in renal tissues from DN patients and streptozocin (STZ)-induced DN mice. Furthermore, GPR107-deficient mice with STZ-induced DN exhibited more severe kidney damage, marked by increased GBM thickening and COL4 accumulation. In vitro, GPR107 deficiency under high-glucose conditions promoted COL4 accumulation in the ECM of podocytes due to increased COL4 production and decreased COL4 degradation. Mechanistically, we demonstrated that GPR107 contributes to angiotensin II receptor type 1 (AT1R) internalization through clathrin-mediated endocytosis (CME) in podocytes. Therefore, GPR107 deficiency impairs AT1R internalization, leading to increased membrane-bound AT1R. This, in turn, activates the AT1R/Ca signaling pathway to promote phosphorylation of cAMP-response element-binding protein (CREB), ultimately enhancing COL4 synthesis and inhibiting the expression of matrix metalloproteinase 2 (MMP-2). These findings shed light on new functions of GPR107 in DN and offer new insights into a therapeutic target for DN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814420PMC
http://dx.doi.org/10.1186/s43556-025-00250-1DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
8
receptor 107
8
diabetic nephropathy
8
gbm thickening
8
col4
8
ecm podocytes
8
col4 balance
8
therapeutic target
8
gpr107 deficiency
8
at1r internalization
8

Similar Publications

Background/objectives: Taste guides the consumption of food and alcohol for both humans and rodents. Given that chronic dietary exposure to bitter and sweet foods are purported to alter the perception of bitter and sweet tastes respectively, we hypothesized that dietary habits may shape how the taste properties of ethanol are perceived and thus how it is consumed.

Methods: Using C57BL/6 mice as a model, we contrasted taste behavior, morphology, and expression after a 4-week diet featuring consistent bitter, sweet, or neutral (water) stimuli.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) represent a family of membrane proteins that regulate several cellular processes. Among the GPCRs, G protein-coupled receptor kinases (GRKs) regulate downstream signaling pathways and receptor desensitization. GRK2 has gained significant interest due to its cardiovascular physiology and pathological involvement.

View Article and Find Full Text PDF

Obesity is commonly associated with metabolic diseases including type 2 diabetes, hypertension, and dyslipidemia. Moreover, individuals with obesity are at increased risk of cardiovascular disease. However, a subgroup of individuals within the obese population presents without concurrent metabolic disorders.

View Article and Find Full Text PDF

The acute phase response is a hallmark of all inflammatory reactions and acute phase reactants, such as C-reactive protein (CRP) and serum amyloid A (SAA) proteins, are among the most useful plasma and serum markers of inflammation in clinical medicine. Although it is well established that inflammatory cytokines, mainly interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) induce SAA in the liver, the biological functions of elicited SAA remain an enigma. By the classical multi-step protein purification studies of chemotactic factors present in plasma or serum, we discovered novel chemokines and SAA1 fragments, which are induced during inflammatory reactions.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) constitute the largest and most frequently used family of molecular drug targets. The simplicity of GPCR drug design results from their common seven-transmembrane-helix topology and well-understood signaling pathways. GPCRs are extremely sensitive to slight changes in the chemical structure of compounds, which allows for the reliable design of highly selective and specific drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!