In recent years, CRISPR (clustered regularly interspaced short palindromic repeats) has emerged as a detection technique with high specificity and sensitivity. However, it still needs improvements in terms of reducing cost, complexity, cross-contamination, technical requirements, and lack of quantification platforms. Microfluidic strategies can advance CRISPR-based technology and be modified to a higher level in the future. This review provides an overview of CRISPR-based detection systems (CRISPR-Dx) and their mechanism. Then, it explains how they have been optimized for fast and accurate point-of-care testing (POCT) using microfluidic devices such as SHINE, CARMEN, DNAiTECH, Dμchip, MAPnavi, FAST, and ITP. We discuss their innovations, primarily focusing on how they develop CRISPR-Dx in detection throughput, quantification, simple operation, visualization, sensitivity, specificity, and anti-contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5ay00063g | DOI Listing |
Lab Chip
March 2025
Seagate Technology LLC, 1280 Disc Dr, Shakopee, MN 55379, USA.
The rapid growth in data generation presents a significant challenge for conventional storage technologies. DNA storage has emerged as a promising solution, offering substantially greater storage density and durability. However, the current DNA data writing process is costly and labor-intensive, hindering the commercialization of DNA data storage.
View Article and Find Full Text PDFBiomater Sci
March 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Vascularization is a crucial aspect of biofabrication, as the development of vascular networks is essential for tissue survival and the optimization of cellular functions. Spheroids have emerged as versatile units for vascularization, demonstrating significant potential in angiogenesis and prevascularization for tissue engineering and regenerative medicine. However, a major challenge in creating customized vascularized spheroids is the construction of a biomimetic extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFAgeing Res Rev
March 2025
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing, China. Electronic address:
Aging is a gradual and irreversible process accompanied by the decline in tissue function and a significantly increased risk of various aging-related and geriatric diseases. Especially in the paradoxical context of accelerated global aging and the widespread emergence of pandemics, aging-related and geriatric diseases have become leading causes of individual mortality and disability, drawing increasing attention from researchers and investors alike. Despite the utility of current in vitro systems and in vivo animal models for studying aging, these approaches are limited by insurmountable inherent constraints.
View Article and Find Full Text PDFAnal Chem
March 2025
School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen 518172, China.
Early and precise diagnosis of neurodegenerative disorders like Alzheimer's (AD) and Parkinson's (PD) is crucial for slowing their progression and enhancing patient outcomes. Exosomal microRNAs (miRNAs) are emerging as promising biomarkers due to their ability to reflect the diseases' pathology, yet their low abundance poses significant detection hurdles. This review article delves into the burgeoning field of electrochemical biosensors, designed for the precise detection of exosomal miRNA biomarkers.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China; State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China. Electronic address:
Rapid, portable, and contamination-resistant nucleic acid detection methods are necessary due to the threat posed by emerging viruses to public health and agricultural output. We establish CARE (CRISPR-associated airtight real-time electronic diagnostic device), a novel platform that combines CRISPR-Cas12a with a hermetically sealed microfluidic chip to overcome the limitations of present technologies, which struggle to balance sensitivity, multiplexing, and field applicability. By combining isothermal amplification and CRISPR detection within a hermetically sealed microfluidic chip, CARE eliminates the risk of nucleic acid aerosol contamination while enabling simultaneous high-throughput analysis of seven pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!