Acrylic pressure-sensitive adhesives (PSAs) are loosely crosslinked polymer networks widely used across various industries. However, the network structure and inert nature of the acrylic polymer backbone present sustainability challenges. To address these issues, efforts are being made to incorporate degradable units into the polymer backbone. Yet, two key obstacles remain: i) the polymer does not degrade into sufficiently small fragments, and ii) the adhesive and viscoelastic properties are often inferior to those of conventional acrylic polymers. In this study, we developed a PSA utilizing vinylcyclopropane (VCP)-based monomers and a VCP-based crosslinker, achieving molecular-level degradation while maintaining adhesive performance and viscoelastic properties comparable to traditional acrylic PSAs. Under optimized polymerization conditions, the polymer incorporates ozone-labile double bonds into its backbone, enabling controlled molecular degradation without compromising its properties. By synthesizing and strategically combining various VCP-based monomers, we developed PSAs with tailored adhesion and viscoelastic behavior on par with conventional acrylic PSAs. These advancements indicate that the degradable polymers and PSAs developed in this study are poised for practical application in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202419498 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
Green-solvent-processed all-polymer solar cells (AP-SCs) are regarded as an excellent candidate for renewable energy due to their better stability and eco-friendly features. Two polymers, PYF-U and PYF-BO, have been designed by introducing a Y-series derivative with difluoro-substituted dicyanindenone units and a difluorobenzotriazole derivative as the first and second electron-deficient (A) units, respectively. The introduction of two additional F atoms on dicyanindenone units leads to a more coplanar backbone because of noncovalent interactions.
View Article and Find Full Text PDFChem Commun (Camb)
March 2025
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
Herein, we present a hybrid polymer material with phosphonic acid and sulfonic acid moieties on a poly(pentafluorostyrene) backbone utilizing the SAr Michaelis-Arbuzov and the -fluoro-thiol reaction. Blending the hybrid material with a benzimidazole polymer yielded a mechanically stable membrane featuring proton conductivities up to three times higher than conventional Nafion N211 at temperatures above 120 °C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Seoul National Univeristy, Chem, SNU, 151-747, Seoul, KOREA, REPUBLIC OF.
Cyclic polymers are very attractive due to their unique properties, however so far, have simple and less reactive backbone structures due to synthetic limitations, restricting their further post-modification. Notably, allenes present a potentially useful platform in polymer chemistry due to their well-established toolbox in organic chemistry. Nevertheless, the biggest challenge remains in synthesizing poly(allenamer)s with high allene contents or polymerization efficiency, as well as synthesizing different types of cyclic poly(allenamer)s.
View Article and Find Full Text PDFACS Omega
March 2025
Faculty of Science, Department of Chemistry, Fırat University,, Elazig 23169, Turkey.
Advanced functional polymeric materials can possess chemical reactivity, catalytic properties, photosensitivity, electrical conductivity, biological activity, biocompatibility, pharmacological properties, selective separation, and energy conversion of traditional polymers. Because of these properties, the production and characterization of functional polymers has become an essential part of modern industry and advanced technology. Methacrylate polymers are highly versatile materials owing to their exceptional properties including superior optical transparency, excellent light transmission, and robust thermal stability.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, Nova Scotia B3H 4R2, Canada.
Organic polymers generally feature 1-dimensional chains or 2-dimensional rings in their backbones since synthetic challenges limit the availability of 3-dimensional monomers. Inorganic cages are less strained and more accessible, offering an alternative route to explore this parameter space. However, only two families─carboranes and polyhedral oligomeric silsesquioxanes (POSS)─have been well-studied, revealing materials with valuable mechanical and thermal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!