Rice glycosyltransferase UGT706F1 functions in heat tolerance through glycosylating flavonoids under the regulation of transcription factor MYB61.

Plant J

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, 266237, China.

Published: February 2025

Global metabolic and transcriptional reprogramming is a common event in plant abiotic stress responses, however, the relevant molecular mechanisms remain largely unknown. Here, we characterized the physiological function and molecular mechanism for the rice UGT706F1. We found that UGT706F1 can be potently induced by high temperature. Its overexpression can markedly enhance the heat tolerance of rice through improving the capacity of scavenging reactive oxygen species, whereas its functional deletion results in heat sensitivity in rice. To investigate the regulatory mechanism of UGT706F1 in response to high temperature, we carried out extensive screening of the in vitro enzymatic activity of UGT706F1 and discovered that UGT706F1 exhibits broad-spectrum activity toward flavonoid compounds. Through targeted flavonoid metabolomics analysis, we further revealed that the overexpression of UGT706F1 elevated the content of diverse flavonoids and flavonoid glycosides in rice. Subsequently, via transcriptome analysis, we found that following heat treatment, the overexpression of UGT706F1 was capable of enhancing the transcriptional activity of those genes including the flavonoid synthases, heat shock factors, heat shock proteins, glutathione S-transferase, and various antioxidant enzymes. Furthermore, we identified an R2R3 MYB-type transcription factor MYB61 and demonstrated that MYB61 could directly bind the promoter of UGT706F1 and activate the transcription of UGT706F1. The overexpression of MYB61 also enhanced the heat tolerance and increased flavonoid glycosides. Overall, this study unveiled a novel pathway of the plant heat tolerance response mediated by MYB61-UGT706F1 module and identified a new UGT player for the metabolic and transcriptional regulation under high-temperature circumstance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.17252DOI Listing

Publication Analysis

Top Keywords

heat tolerance
16
ugt706f1
10
heat
8
transcription factor
8
factor myb61
8
metabolic transcriptional
8
high temperature
8
overexpression ugt706f1
8
flavonoid glycosides
8
heat shock
8

Similar Publications

Elevated temperatures inhibit the germination of a concerning number of crop species. One strategy to mitigate the impact of warming temperatures is to identify and introgress adaptive genes into elite germplasm. Diversity must be sought in wild populations, coupled with an understanding of the complex pattern of adaptation across a broad range of landscapes.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L.), a cornerstone of global cereal crops, is increasingly vulnerable to concurrent heat stress, a critical abiotic factor that is intensified by climate change. This study employed genome-wide association studies (GWAS) to investigate "stress memory," a phenomenon where prior stress exposure enhances a plant's response to subsequent stress events.

View Article and Find Full Text PDF

Yield reliability under diverse environments is important to address climate stress consequences in wheat production systems. Breeding for reliability under a changing climate remains a challenge in wheat. We assessed the performance of 18 hexaploid (Triticum aestivum L.

View Article and Find Full Text PDF

A Nd-Yb ratiometric luminescent nanothermometer for assessing thermal resistance discrepancies between A549 and BEAS-2B cells to achieve selective hyperthermia.

Biomater Sci

March 2025

Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China.

Temperature is a crucial physical parameter in living organisms, directly associated with cellular activities. Elevated temperatures induce cell death, thereby establishing hyperthermia as a viable modality for cancer therapy. The demand for determining appropriate cancer types for hyperthermia lies in identifying cancer cells that exhibit poorer heat tolerance compared to normal cells.

View Article and Find Full Text PDF

Caenorhabditis elegans (C. elegans) tetraspanin-7 (TSP-7) protein is an orthologue of the Human tetraspanin CD63, which has recently been shown to be a negative regulator of autophagy. In this study a mutant strain of wild-type (WT) C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!