Usher syndrome (USH) is the predominant cause of inherited deaf-blindness, largely attributed to type 2A (USH2A) mutations, and particularly the prevalent c.2299delG mutation. While knockout models successfully replicated the cochlear phenotype of USH, recapitulating the retinal phenotype proved challenging. Given that patient mutations often lead to mutant protein expression rather than its absence, we developed a knockin model expressing the mouse equivalent of the c.2299delG mutation in USH2A. This model exhibited a functional decline in the retina, characterized by retinal degeneration, structural anomalies in the connecting cilium and outer segment, and mislocalization of mutant USH2A and its interacting partners ADGRV1 and whirlin. Remarkably, retinal symptoms manifested earlier than in the Ush2a mice. In the cochlea, the expression of truncated USH2A resulted in congenital hearing loss and disorganized stereocilia bundles. Thus, this knockin model underscores the necessity of expressing the mutant protein to faithfully reproduce the USH phenotype, providing valuable insights into the pathology of USH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-76550-6_42DOI Listing

Publication Analysis

Top Keywords

knockin model
12
c2299delg mutation
12
mouse equivalent
8
equivalent c2299delg
8
hearing loss
8
retinal degeneration
8
mutant protein
8
ush2a
5
model mouse
4
mutation usherin
4

Similar Publications

Huntington's disease (HD) is a neurodegenerative disorder that presents motor, cognitive, and psychiatric symptoms as it progresses. Prior to motor symptoms onset, alterations, and dysfunctions in the corticostriatal projections have been described along with cognitive deficits, but the sequence of early alterations of brain circuits is largely unknown. There is thus a crucial need to identify early alterations that precede symptoms and that could be used as potential early disease markers.

View Article and Find Full Text PDF

SubtiToolKit: a bioengineering kit for Bacillus subtilis and Gram-positive bacteria.

Trends Biotechnol

March 2025

Department of Bioengineering, Imperial College London, London, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.

Building DNA constructs of increasing complexity is key to synthetic biology. Golden Gate (GG) methods led to the creation of cloning toolkits - collections of modular standardized DNA parts hosted on hierarchic plasmids, developed for yeast, plants, Gram-negative bacteria, and human cells. However, Gram-positive bacteria have been neglected.

View Article and Find Full Text PDF

Background: Recent studies highlight the critical role of microglia in neurodegenerative disorders, and emphasize the need for humanized models to accurately study microglial responses. Human-mouse microglia xenotransplantation models are a valuable platform for functional studies and for testing therapeutic approaches, yet currently those models are only available for academic research. This hampers their implementation for the development and testing of medication that targets human microglia.

View Article and Find Full Text PDF

We developed Huntington's disease (HD) modelling induced pluripotent stem cells (iPSCs) by genome engineering of iPSCs from healthy donors. For this, we established a homologous-recombination-based biallelic substitution technique called the allele-specific universal knock-in system (asUKiS). asUKiS allows for scarless and allele-by-allele substitution of the entire region encompassing not only the polyQ-repeat but also the associated genetic modifiers surrounding the repeat region, allowing us to generate five iPSC lines with identical genetic modifiers on both alleles, differing only in polyQ repeat numbers.

View Article and Find Full Text PDF

TDP-43 mislocalization and aggregation are key pathological features of amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD). However, existing transgenic hTDP-43 WT or ∆NLS-overexpression animal models primarily focus on late-stage TDP-43 proteinopathy. To complement these models and to study the early-stage motor neuron-specific pathology during pre-symptomatic phases of disease progression, we generated a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!