A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An integrated workflow combining machine learning and wavelet transform for automated characterization of heterogeneous groundwater systems. | LitMetric

Groundwater aquifers are complex systems that require accurate lithological and hydrogeological characterization for effective development and management. Traditional methods, such as core analysis and pumping tests provide precise results but are expensive, time-consuming, and impractical for large-scale investigations. Geophysical well logging data offers an efficient and continuous alternative, though manual interpretation of well logs can be challenging and may result in ambiguous outcomes. This research introduces an automated approach using machine learning and signal processing techniques to enhance the aquifer characterization, focusing on the Quaternary system in the Debrecen area, Eastern Hungary. The proposed methodology is initiated with the imputation of missing deep resistivity logs from spontaneous potential, natural gamma ray, and medium resistivity logs utilizing a gated recurrent unit (GRU) neural network. This preprocessing step significantly improved the data quality for subsequent analyses. Self-organizing maps (SOMs) are then applied to the preprocessed well logs to map the distribution of the lithological units across the groundwater system. Considering the mathematical and geological aspects, the SOMs delineated three primary lithological units: shale, shaly sand, and sand and gravel which aligned closely with drilling data. Continuous wavelet transform analysis further refined the mapping of lithological and hydrostratigraphical boundaries. The integrated methods effectively mapped the subsurface aquifer generating a 3D lithological model that simplifies the aquifer into four major hydrostratigraphical zones. The delineated lithology aligned closely with the deterministically estimated shale volume and permeability, revealing higher permeability and lower shale volume in the sandy and gravelly layers. This model provides a robust foundation for groundwater flow and contaminant transport modeling and can be extended to other regions for improved aquifer management and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811210PMC
http://dx.doi.org/10.1038/s41598-025-89410-5DOI Listing

Publication Analysis

Top Keywords

machine learning
8
wavelet transform
8
well logs
8
resistivity logs
8
lithological units
8
aligned closely
8
shale volume
8
lithological
5
integrated workflow
4
workflow combining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!