Germ cell connectivity via intercellular bridges is a widely conserved feature across metazoans. However, its functional significance is poorly understood. Intercellular bridges are essential for fertility in male mice as genetic ablation of a critical bridge component, TEX14, causes spermatogenic failure, but the underlying reasons are unknown. Here we utilized a Tex14 hypomorph with reduced intercellular bridges along with Tex14-null mice that completely lack bridges to examine the roles of germ cell connectivity during spermatogenesis. We report that in males deficient for TEX14 and intercellular bridges, germ cells fail to complete meiotic DNA replication, synapsis and meiotic double-strand break repair. They also derepress retrotransposons and accumulate retrotransposon-encoded proteins during meiosis. Single-cell RNA-sequencing confirms sharing of transcripts between wild-type spermatids and demonstrates its partial attenuation in Tex14 hypomorphs, indicating that intercellular bridges enable cytoplasmic exchange between connected germ cells in testes. Our findings suggest that regulation of meiosis is non-cell-intrinsic and inform a model in which intercellular bridges influence critical meiotic events and protect germline genome integrity during spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811169PMC
http://dx.doi.org/10.1038/s41467-025-56742-9DOI Listing

Publication Analysis

Top Keywords

intercellular bridges
28
bridges essential
8
germ cell
8
cell connectivity
8
germ cells
8
intercellular
7
bridges
7
essential transposon
4
transposon repression
4
repression meiosis
4

Similar Publications

Incomplete cytokinesis results in the formation of stable intercellular bridges that have been extensively studied in bilaterians, where they play essential roles in cell-cell communication and coordination of differentiation. However, little is known about their structure and molecular composition in non-bilaterian animals. This study characterizes germline and somatic intercellular bridges in the cnidarian , providing insights into their evolutionary origins and functional significance.

View Article and Find Full Text PDF

Intercellular bridges are essential to connect developing germline cells. The egg chamber is a powerful model system to study germline intercellular bridges, or ring canals (RCs). RCs connect the developing oocyte to supporting nurse cells, and defects in their stability or growth lead to infertility.

View Article and Find Full Text PDF

Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication.

View Article and Find Full Text PDF

Intercellular bridges are essential for transposon repression and meiosis in the male germline.

Nat Commun

February 2025

Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.

Germ cell connectivity via intercellular bridges is a widely conserved feature across metazoans. However, its functional significance is poorly understood. Intercellular bridges are essential for fertility in male mice as genetic ablation of a critical bridge component, TEX14, causes spermatogenic failure, but the underlying reasons are unknown.

View Article and Find Full Text PDF

Prostate cancer (PCa) pathogenesis relies on intercellular communication, which can involve tunnelling nanotubes (TNTs) and extracellular vesicles (EVs). TNTs and EVs have been reported to transfer critical cargo involved in cellular functions and signalling, prompting us to investigate the extent of organelle and protein transfer in PCa cells and the potential involvement of the androgen receptor. Using live cell imaging microscopy, we observed extensive formation of TNTs and EVs operating between PCa, non-malignant, and immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!