HybProm: An attention-assisted hybrid CNN-BiLSTM model for the interpretable prediction of DNA promoter.

Methods

College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000 Jiangxi, China. Electronic address:

Published: March 2025

Promoter prediction is essential for analyzing gene structures, understanding regulatory networks, transcription mechanisms, and precisely controlling gene expression. Recently, computational and deep learning methods for promoter prediction have gained attention. However, there is still room to improve their accuracy. To address this, we propose the HybProm model, which uses DNA2Vec to transform DNA sequences into low-dimensional vectors, followed by a CNN-BiLSTM-Attention architecture to extract features and predict promoters across species, including E. coli, humans, mice, and plants. Experiments show that HybProm consistently achieves high accuracy (90%-99%) and offers good interpretability by identifying key sequence patterns and positions that drive predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2025.02.001DOI Listing

Publication Analysis

Top Keywords

promoter prediction
8
hybprom attention-assisted
4
attention-assisted hybrid
4
hybrid cnn-bilstm
4
cnn-bilstm model
4
model interpretable
4
interpretable prediction
4
prediction dna
4
dna promoter
4
promoter promoter
4

Similar Publications

BEL1-like homeodomain transcription factor SAWTOOTH1 (MdSAW1) in Malus domestica enhances the tolerance of transgenic apple and Arabidopsis to zinc excess stress.

Int J Biol Macromol

March 2025

Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China. Electronic address:

In recent years, the phenomenon of zinc pollution in orchards has become increasingly serious, and the safety of apple production is facing a major risk. Therefore, exploring excellent genes for zinc tolerance has a positive effect on apples. Up to now, there is still a lack of attention on genes related to zinc stress tolerance in apples.

View Article and Find Full Text PDF

The Enhancer-Promoter-Mediated Transcription During Neurite Regrowth of Injured Cortical Neurons.

Cells

February 2025

Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.

Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons.

View Article and Find Full Text PDF

Background: The ataxia-telangiectasia mutated (ATM) kinase phosphorylates and activates several downstream targets that are essential for DNA damage repair, cell cycle inhibition and apoptosis. Germline biallelic inactivation of the ATM gene causes ataxia-telangiectasia (A-T), and heterozygous pathogenic variant (PV) carriers are at increased risk of cancer, notably breast cancer. This study aimed to investigate whether DNA methylation profiling can be useful as a biomarker to identify tumors arising in ATM PV carriers, which may help for the management and optimal tailoring of therapies of these patients.

View Article and Find Full Text PDF

Predictive biomarkers for the efficacy of PARP inhibitors in ovarian cancer: an updated systematic review.

BJC Rep

March 2025

Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK.

Background: PARP inhibitors are effective in treating ovarian cancer, especially for BRCA1/2 pathogenic variant carriers and those with HRD (homologous recombination deficiency). Concerns over toxicity and costs have led to the search for predictive biomarkers. We present an updated systematic review, expanding on a previous ESMO review on PARP inhibitor biomarkers.

View Article and Find Full Text PDF

Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.).

Theor Appl Genet

March 2025

Laboratory for Research and Utilization of Qinghai-Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.

qFT.A02-1, a major quantitative trait locus controlling flowering time in Brassica napus, was mapped to a 104.8-kb region on chromosome A02, and BnaA02G0156900ZS is the candidate gene in response for flowering time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!