Objective: This study aimed to elucidate the bidirectional causal relationships between Alzheimer's disease (AD), cerebral small vessel disease (CSVD), and the effect of inflammatory cytokines on AD and CSVD using Mendelian randomization (MR).

Method: We employed publicly available summary-level data from genome-wide association studies for AD, CSVD, and 91 inflammatory cytokines. Genetic variants strongly associated with each risk factor were selected as instrumental variables. The inverse variance weighted (IVW) method was primarily used for causal inference, with sensitivity analyses including MR-Egger and weighted median estimators.

Results: MR analysis revealed that genetically predicted CSVD significantly increased the risk of AD (odds ratio [OR] = 1.035, 95% CI, 1.015-1.056, P = 0.001). Conversely, AD did not significantly influence CSVD risk (OR = 0.878, 95% CI, 0.701-1.100, P = 0.257). Among inflammatory cytokines, Axin1 (OR = 1.082, 95% CI, 1.009-1.159, P = 0.026) and bNGF (OR = 1.061, 95% CI, 1.001-1.125, P = 0.048) increased AD risk, while CD5 (OR = 0.937, 95% CI, 0.887-0.991, P = 0.022) and CXCL11 (OR = 0.951, 95% CI, 0.912-0.992, P = 0.019) decreased AD risk. FGF19 (OR = 0.560, 95% CI, 0.405-0.773, P < 0.001) and TNFSF14 (OR = 0.744, 95% CI, 0.580-0.954, P = 0.020) were protective against CSVD.

Conclusion: Our findings suggest that CSVD may increase AD risk, while specific inflammatory cytokines exhibit differential associations with these conditions. Targeting vascular health and inflammation may offer promising therapeutic avenues for managing neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2025.108259DOI Listing

Publication Analysis

Top Keywords

inflammatory cytokines
16
relationships alzheimer's
8
alzheimer's disease
8
disease cerebral
8
cerebral small
8
small vessel
8
vessel disease
8
mendelian randomization
8
csvd inflammatory
8
increased risk
8

Similar Publications

The IL-6 axis in vascular inflammation: effects of IL-6 receptor blockade on vascular lesions from patients with giant-cell arteritis.

Ann Rheum Dis

March 2025

Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic (member of European Reference Network [ERN]-for rare diseases RITA), University of Barcelona, Centre de Recerca biomèdica (CRB)-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Electronic address:

Objectives: Blocking interleukin (IL)-6-receptor with tocilizumab has been a major advance in the treatment of giant-cell arteritis (GCA), supporting a crucial role of IL-6 receptor signalling. However, nearly half of the patients are not able to maintain glucocorticoid- free remission with tocilizumab. The impact of tocilizumab on vascular lesions of GCA is largely unknown since conflicting results have been obtained by imaging.

View Article and Find Full Text PDF

In situ global mapping of protein perturbations via protein abundance and conformation analysis.

Anal Chim Acta

May 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:

Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.

View Article and Find Full Text PDF

Fc-mediated immune stimulating, pro-inflammatory and antitumor effects of anti-HER2 IgE against HER2-expressing and trastuzumab-resistant tumors.

J Immunother Cancer

March 2025

St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK

Background: Anti-human epidermal growth factor receptor 2 (HER2) IgG1-based antibody therapies significantly improve cancer prognosis, yet intrinsic or acquired resistance to fragment antigen-binding (Fab)-mediated direct effects commonly occurs. Most resistant tumors retain antigen expression and therefore remain potentially targetable with anti-HER2 therapies that promote immune-mediated responses. Tumor-antigen-specific IgE class antibodies can mediate powerful immune cell-mediated effects against different cancers and have been shown to activate IgE Fc receptor-expressing monocytes.

View Article and Find Full Text PDF

ZNF667 alleviates the inflammatory damage in intervertebral disc degeneration via inhibiting NF-κB signaling pathway.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.

View Article and Find Full Text PDF

1-Octen-3-ol exacerbates depression-induced neurotoxicity via the TLR4/NF-κB and Nrf2/HO-1 pathways.

Neurotoxicology

March 2025

Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China. Electronic address:

1-Octen-3-ol is a volatile compound widely found in various fungi and plants, and studies have suggested its potential role in the development of neurodegenerative diseases. However, the mechanism by which 1-octen-3-ol induces neural injury in rats remains unclear. In this study, we used aerosolized 1-octen-3-ol to treat depressive model rats to investigate its effects on neural injury behaviors and neurophysiology in SD rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!