Microbes play an important role in the food chain by metabolizing organic matter, cycling nutrients, and maintaining a dynamic equilibrium among organisms in water and sediment. The objective is to study the fluctuating taxonomic microbial diversity profile in the sediment-water interface at different days of culture (DOC) of Penaeus vannamei in varying salinities using the Illumina MiSeq platform. Sediment samples were collected in Tamil Nadu, India, from low-saline, brackish water, and high-saline ponds at 30, 60, and 90 DOC. Bacterial richness and diversity in species were high in low-saline ponds. Beta-diversity variation indicated more differences in bacterial composition in high- and low-saline ponds. The predominant phyla observed were Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, and Cyanobacteria. High-saline ponds accounted for more nitrification bacterial communities, sulfur-reducing bacterial communities, sulfur-oxidizing bacterial communities, and high redox potential, whereas denitrification bacterial communities were high in brackish water ponds.

Download full-text PDF

Source
http://dx.doi.org/10.1093/lambio/ovaf020DOI Listing

Publication Analysis

Top Keywords

bacterial communities
20
sediment-water interface
8
penaeus vannamei
8
brackish water
8
high-saline ponds
8
low-saline ponds
8
communities high
8
bacterial
6
communities
5
ponds
5

Similar Publications

Bacterial populations experience chemical gradients in nature. However, most experimental systems either ignore gradients or fail to capture gradients in mechanically relevant contexts. Here, we use microfluidic experiments and biophysical simulations to explore how host-relevant shear flow affects antimicrobial gradients across communities of the highly resistant pathogen .

View Article and Find Full Text PDF

In Vitro Activity of Bacteriophages Against Ocular Methicillin-resistant S. aureus Isolates Collected in the US.

Ophthalmol Ther

March 2025

Team "Staphylococcal Pathogenesis", CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.

Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of sight-threatening infections in the US. These strains pose a significant challenge in managing ocular infections, as they frequently exhibit resistance to first-line empirical antibiotics. To assess the potential of bacteriophages as innovative topical therapies for treatment of recalcitrant ocular infections, we evaluated the in vitro antimicrobial activity of a set of anti-S.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is one of the major global concerns in the current scenario. Mass-gathering events in fast-developing and densely populated areas may contribute to antibiotic resistance. Despite meticulous planning and infrastructure development, the effect of mass gatherings on microbial ecosystems and antibiotic resistance must be investigated.

View Article and Find Full Text PDF

Tobacco bacterial wilt (TBW), caused by Ralstonia solanacearum, significantly impacts tobacco yield and quality, leading to substantial economic losses. This study investigated the effects of the microbial agents JX (Pichia sp. J1 and Klebsiella oxytoca ZS4) on the soil properties, rhizospheric microbial community, tobacco agronomic traits, and TBW incidence through field experiments.

View Article and Find Full Text PDF

Impacts of Naphthenic Acids (NAs) Exposure on Soil Bacterial Community and Antibiotic Resistance Genes (ARGs) Dissemination.

Curr Microbiol

March 2025

Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.

Naphthenic acids (NAs) are indigenous and complex components in petroleum. In the context of increasing global energy demand, the increasing extraction of fossil resources leads to increased environmental release of NAs, resulting in various environmental risks. However, the impact of NAs exposure on soil microorganisms remains still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!