In some types of mass spectrometers, such as time-of-flight mass spectrometers (TOF-MSs), it is necessary to control pulsed beams of ions. This can be easily accomplished by applying a pulsed voltage to the pusher electrode while the ionizer is continuously flowing ions. This method is preferred for its simplicity, although the ion utilization efficiency is not optimized. Here we employed another pulse-control method with a higher ion utilization rate, which is to bunch ions and kick them out instead of letting them stream. The benefit of this method is that higher sensitivity can be achieved; since the start of new ions cannot be allowed during TOF separation, it is highly advantageous to bunch ions that would otherwise be unusable. In this study, we used analytical and numerical methods to design a new bunching ionizer with reduced resources, adopting the principle of the electrostatic ion beam trap. The test model experimentally demonstrated the bunching performance with respect to the sample gas density and ion bunching time using gas samples and electron impact ionization. We also conducted an experiment connecting the newly developed bunching ionizer with a miniature TOF-MS. As a result, the sensitivity was improved by an order of magnitude compared to the case using a nonbunching ionizer. Since the device is capable of bunching ions with low voltage and power consumption, it will be possible to find applications in portable mass spectrometers with reduced resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.4c00436 | DOI Listing |
Rev Environ Health
March 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China.
House dust mite (HDM) allergens are one of the most important causes of allergenic diseases in the indoor environment. The World Health Organization (WHO) has defined risk thresholds for Group I HDM allergens as a concentration of 2 and 10 μg/mL in dust for producing asthma risk and polar asthma attacks, respectively. Continuing exposure to high concentrations of HDM allergens greatly increases the risk of developing allergic diseases.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. Electronic address:
Background: The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis.
View Article and Find Full Text PDFEnviron Res
March 2025
School of Chemistry and Chemical Engineering, and Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, Xinjiang 832003, P. R. China. Electronic address:
Iodine plays a key role in atmospheric chemistry that can significantly affect the atmospheric oxidation capacity. Although the oceans are the main reservoir of iodine on Earth, iodine is also widely present in the terrestrial environment. Therefore, a comprehensive understanding of the present sources of iodine in inland areas is warranted for the evaluation of its environmental effect.
View Article and Find Full Text PDFTalanta
March 2025
European Commission, Joint Research Centre (JRC), Karlsruhe, Germany.
In this paper we present the high-precision and accurate Th/Th isotope ratio measurement by a novel multi-collector inductively coupled plasma mass spectrometer with a pre-cell mass filter and a MS/MS collision/reaction cell (Neoma™ MC-ICP-MS/MS). No tailing correction is needed for the Th signal, as the tailing of an adjacent high intensity peak (abundance sensitivity) is effectively reduced due to high extent of Ar-based ion removal before the electrostatic analyser/magnetic sector. The obtained abundance sensitivity at m-2 (i.
View Article and Find Full Text PDFAnal Chem
March 2025
Department of Chemistry, Atomic and Mass Spectrometry - A&MS Research Group, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent 9000, Belgium.
Novel low-dispersion ablation cell designs and highly efficient aerosol transport systems have enabled fast elemental mapping using laser ablation-ICP-mass spectrometry (LA-ICP-MS) at high spatial resolution and its application in various research fields. Nowadays, the fastest low-dispersion setups enable narrow single pulse responses (SPR, duration of the transient signal observed upon a single laser shot), which enhance the signal-to-noise ratio and boost the pixel acquisition rate attainable in elemental mapping applications. In this work, the analytical performance of a nanosecond 193 nm ArF* excimer-based kHz laser in combination with a low-dispersion tube-type ablation cell, coupled to an ICP-mass spectrometer equipped with a time-of-flight (ToF) analyzer, was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!