Parental substance abuse increases the risk of neurological and psychiatric disorders in offsprings. However, its underlying mechanism remains elusive. Our previous study demonstrated that long-term exposure to methamphetamine (Meth), a psychostimulant drug with high addiction potential, remarkably alters the gut microbiome and metabolites in male mice, which contribute to Meth-induced anxiety-like behaviors. The current study aimed to investigate whether gut microbiota and metabolism serve as potential peripheral targets for transgenerational mental problems by paternal Meth exposure. We found that paternal Meth exposure induced depression-like behaviors both in the first (F1) and the second (F2) generations of male mice. Further, the depletion of gut bacteria through antibiotic treatments normalized the depression-like behaviors to normal levels in both F1 and F2 male mice. Then, alterations in gut bacterial composition were observed in both F1 and F2 male mice. Specifically, Eubacterium_ruminantium_group, Enterorhabdus, Alloprevotella, and Parabacteroides were the commonly affected bacterial taxa in F1 and F2 male mice. In addition, the results of alterations in gut metabolism showed that LPC 14:1-SN1 emerged as the consistently altered metabolite in the colons of F1 and F2 male mice. Taken together, our findings provide the first evidence that paternal Meth exposure enhances depression-like behaviors in F1 and F2 male mice, potentially mediated by the gut microbiome and metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202402839R | DOI Listing |
Front Immunol
March 2025
College of Medicine, Yanbian University, Yanji, China.
Introduction: Alzheimer's disease (AD), a prevalent neurodegenerative disease, is primarily characterized by progressive neuron loss and memory impairment. NOD-like receptors (NLRs) are crucial for immune regulation and maintaining cellular homeostasis. Recently, NLRs have been identified as important contributors to neuroinflammation, thus presenting a potential approach for reducing inflammation and slowing AD progression.
View Article and Find Full Text PDFFront Pharmacol
February 2025
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
Introduction: Ginseng, known as the "king of herbs," has long been used in traditional Chinese medicine due to its beneficial properties, including anti-aging, anti-inflammatory, and anti-apoptotic effects. Ginsenosides, the active compounds in ginseng, have shown promise in treating neurodegenerative diseases such as Alzheimer's disease (AD). This study investigates the therapeutic potential of Ginsenoside Ro and its underlying mechanisms in AD treatment.
View Article and Find Full Text PDFDrug Des Devel Ther
March 2025
Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, People's Republic of China.
Purpose: Vaccarin is a natural flavonoid glycoside with anti-inflammatory, antioxidant and nephroprotective effects. However, the effects of vaccarin on renal fibrosis (RF) and its molecular mechanisms remain unclear. This study aimed to investigate the effects of vaccarin on RF and its molecular mechanisms.
View Article and Find Full Text PDFDrug Des Devel Ther
March 2025
Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China.
Background: Specnuezhenide (SPN) is an iridoid glycoside isolated from , an herb prescribed for the treatment of senile osteoporosis. However, the direct role of SPN on bone metabolism remains unclear. In this study, the effects of SPN on d-galactose (d-gal)-induced mice, bone marrow mesenchymal stem cells (BMSCs), and nuclear factor-κB ligand-induced osteoclasts were examined.
View Article and Find Full Text PDFFront Cell Infect Microbiol
March 2025
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
Objectives: Microorganisms contribute to the pathogenesis of obesity, while more studies focus on gut microbiome. However, the relationship between oral microbiota and obesity has yet to be elucidated. This study was designed to investigate the similarities and differences in the effects of a high-fat diet on salivary and gut microbiota through mouse experiments, exploring the hypothesis that oral microbial mechanisms may contribute to obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!