Infantile epileptic spasms syndrome is a severe epilepsy of infancy that is often associated with focal malformations of cortical development. This study aimed to elucidate the genetic landscape and histopathologic aetiologies of infantile epileptic spasms syndrome due to focal malformations of cortical development requiring surgery. Fifty-nine children with a history of infantile epileptic spasms syndrome and focal malformations of cortical development on MRI were studied. Genetic testing of resected brain tissue was performed by high-coverage targeted panel sequencing or exome sequencing. Histopathology and MRI were reviewed, and integrated clinico-pathological diagnoses were established. A genetic diagnosis was achieved in 47 children (80% of cohort). Germline pathogenic variants were identified in 27/59 (46%) children, in (x19), (x2), (x2), (x1), (x1), (x1), and one child with both a / deletion and a pathogenic variant in (x1). Pathogenic brain somatic variants were identified in 21/59 (36%) children, in (x9), (x3), (x2), (x2), (x2), (x1), (x1) and (x1). One child had 'two-hit' diagnosis, with both germline and somatic pathogenic variants in trans. Multimodal data integration resulted in clinical diagnostic reclassifications in 24% of children, emphasizing the importance of combining genetic, histopathologic and imaging findings. Mammalian target of rapamycin pathway variants were identified in most children with tuberous sclerosis or focal cortical dysplasia type II. All nine children with somatic variants in brain were reclassified to mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Somatic mosaicism was a major cause of focal cortical dysplasia type II/hemimegalencephaly (81%) and mild malformation of cortical development with oligodendroglial hyperplasia (100%). The genetic landscape of infantile epileptic spasms syndrome due to focal malformations comprises germline and somatic variants in a range of genes, with mTORopathies and -related mild malformation of cortical development with oligodendroglial hyperplasia being the major causes. Multimodal data integration incorporating genetic data aids in optimizing diagnostic pathways and can guide surgical decision-making and inform future research and therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806418PMC
http://dx.doi.org/10.1093/braincomms/fcaf034DOI Listing

Publication Analysis

Top Keywords

cortical development
24
infantile epileptic
20
epileptic spasms
20
spasms syndrome
20
focal malformations
16
genetic landscape
12
malformations cortical
12
syndrome focal
12
variants identified
12
somatic variants
12

Similar Publications

Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups.

View Article and Find Full Text PDF

Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group.

View Article and Find Full Text PDF

A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a prevalent complication associated with diabetes in which podocyte dysfunction significantly contributes to the development and progression of the condition. Ring finger protein 183 (RNF183) is an ER-localized, transmembrane ring finger protein with classical E3 ligase activity. However, whether RNF183 is involved in glomerular podocyte dysfunction, which is the mechanism of action of DKD, is still poorly understood.

View Article and Find Full Text PDF

miR-204-5p Protects Nephrin from Enzymatic Degradation in Cultured Mouse Podocytes Treated with Nephrotoxic Serum.

Cells

March 2025

Division of Renal Disease and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA.

Nephrin is an essential constituent of the slit diaphragm of the kidney filtering unit. Loss of nephrin expression leads to protein leakage into the urine, one of the hallmarks of kidney damage. Autoantibodies against nephrin have been reported in patients with minimal change disease and recurrent focal segmental glomerulosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!