Dengue fever, a mosquito-borne viral infection, poses a significant global health challenge, particularly in tropical and subtropical regions. The absence of non-effective vaccines and specific treatments underscores the need for advanced diagnostic tools for early detection and management. This study presents a novel biosensor for detecting dengue virus type 4 (DENV-4) by combining carbonyldiimidazole nanoflower (CDI-NF) with MnO on laser-scribed graphene (LSG). Material characterization techniques, including Raman spectroscopy, TEM, XRD, XPS, and FTIR, were employed to confirm the successful integration of MnO and CDI-NF, resulting in a unique 3D flower-like structure. In order to verify the sensing efficiency, a selective DNA sample captured on LSG/MnO-CDI-NF was investigated for specifc binding with Aedes aegypti target DNA through selective hybridization and mismatch analysis. Electrochemical impedance studies further confirmed sensitive detection of up to 1 fM, where the sensitivity was confirmed by large transfer resistance (R) before and after hybridization with a regression coefficient 0.97373. EIS results demonstrated successful surface modifications and the biosensor's specificity in distinguishing between complementary, mismatched, and non-complementary target sequences. The biosensor's ability to differentiate between these sequences highlights its potential for accurate and targeted DENV-4 detection, offering a promising avenue for advancing dengue diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.2731DOI Listing

Publication Analysis

Top Keywords

carbonyldiimidazole nanoflower
8
laser-scribed graphene
8
mno tetrahedral
4
tetrahedral carbonyldiimidazole
4
nanoflower deposition
4
deposition laser-scribed
4
graphene selective
4
selective bio-capture
4
bio-capture dengue
4
dengue fever
4

Similar Publications

Dengue fever, a mosquito-borne viral infection, poses a significant global health challenge, particularly in tropical and subtropical regions. The absence of non-effective vaccines and specific treatments underscores the need for advanced diagnostic tools for early detection and management. This study presents a novel biosensor for detecting dengue virus type 4 (DENV-4) by combining carbonyldiimidazole nanoflower (CDI-NF) with MnO on laser-scribed graphene (LSG).

View Article and Find Full Text PDF

The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO laser irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!