The importance of MCL-1 in leukemogenesis has prompted development of MCL-1 antagonists e.g., S63845, MIK665. However, their effectiveness in acute myeloid leukemia (AML) is limited by compensatory MCL-1 accumulation via the ubiquitin proteasome system. Here, we investigated mechanisms by which kinase inhibitors with Src inhibitory activity e.g., bosutinib (SKI-606) might circumvent this phenomenon. MCL-1 antagonist/SKI-606 co-administration synergistically induced apoptosis in diverse AML cell lines. Consistently, Src or MCL-1 knockdown with shRNA markedly sensitized cells to MCL-1 inhibitors or SKI-606 respectively, while ectopic MCL-1 expression significantly diminished apoptosis. Mechanistically, MCL-1 antagonist exposure induced MCL-1 up-regulation, an event blocked by Src inhibitors or Src shRNA knock-down. MCL-1 down-regulation was associated with diminished transcription and increased K48-linked degradative ubiquitination. Enhanced cell death depended functionally upon down-regulation of phosphorylated STAT3 (Tyr705/Ser727) and cytoprotective downstream targets c-Myc and BCL-xL, as well as BAX/BAK activation, and NOXA induction. Importantly, the Src/MCL-1 inhibitor regimen robustly killed primary AML cells, including primitive progenitors, but spared normal hematopoietic CD34 cells and human cardiomyocytes. Notably, the regimen significantly improved survival in an MV4-11 cell xenograft model, while reducing tumor burden in two patient-derived xenograft (PDX) AML models and increased survival in a third. These findings argue that Src inhibitors such as SKI-606 potentiate MCL-1 antagonist anti-leukemic activity in vitro and in vivo by blocking MCL-1 antagonist-mediated cytoprotective MCL-1 accumulation by promoting degradative ubiquitination, disrupting STAT-3-mediated transcription, and inducing NOXA-mediated MCL-1 degradation. They also suggest that this strategy may improve MCL-1 antagonist efficacy in AML and potentially other malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808118PMC
http://dx.doi.org/10.1038/s41392-025-02125-xDOI Listing

Publication Analysis

Top Keywords

mcl-1
16
mcl-1 antagonist
16
acute myeloid
8
myeloid leukemia
8
mcl-1 accumulation
8
inhibitors src
8
inhibitors ski-606
8
src inhibitors
8
degradative ubiquitination
8
src
6

Similar Publications

Structurally diverse sesquiterpenes with anti-leukemia activity from the rare medicinal plant Liriodendron chinense.

Bioorg Chem

March 2025

Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China. Electronic address:

A further phytochemical investigation on the branches and leaves of Liriodendron chinense, a rare medicinal and ornamental plant endemic to China, yielded thirty-four sesquiterpenes with diverse skeletons. The isolated compounds comprise 12 new naturally occurring sesquiterpenoids (1-12) and 22 known analogues (13-34). The new structures were elucidated by spectroscopic data analyses, and their absolute configurations (except for 10) were determined by electronic circular dichroism spectra, quantum-chemical calculations, and X-ray crystallography.

View Article and Find Full Text PDF

Differences between normal tissues and invading tumors that allow tumor targeting while saving normal tissue are much sought after. Here we show that scarcity of VDAC2, and the consequent lack of Bak recruitment to mitochondria, renders hepatocyte mitochondria resistant to permeabilization by truncated Bid (tBid), a Bcl-2 Homology 3 (BH3)-only, Bcl-2 family protein. Increased VDAC2 and Bak is found in most human liver cancers and mitochondria from tumors and hepatic cancer cell lines exhibit VDAC2- and Bak-dependent tBid sensitivity.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized the therapeutic landscape across various cancer types. However, the emergence of resistance to ICB therapy limits its clinical application. Therefore, it is necessary to better understand immune-resistance mechanisms that could be targeted by actionable drugs, and important to identify predictive markers for selecting patients.

View Article and Find Full Text PDF

Background: Gastroesophageal cancer (GEAC) remains a major health burden and urgently needs novel therapeutic targets. The inhibition of CDK9's activity holds the potential to be a highly effective anti-cancer therapeutic. However, the functional role of CDK9, and its potential targeting in GEAC, remain largely unknown.

View Article and Find Full Text PDF

Oncogenic and microenvironmental signals drive cell type specific apoptosis resistance in juvenile myelomonocytic leukemia.

Cell Death Dis

March 2025

Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Juvenile myelomonocytic leukemia (JMML) is caused by constitutively activated RAS signaling and characterized by increased proliferation and predominant myelomonocytic differentiation of hematopoietic cells. Using MxCre;Ptpn11 mice, which model human JMML, we show that RAS pathway activation affects apoptosis signaling through cell type-dependent regulation of BCL-2 family members. Apoptosis resistance observed in monocytes and granulocytes was mediated by overexpression of the anti-apoptotic and down-regulation of the pro-apoptotic members of the BCL-2 family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!