Mechanical integrity is a pivotal characteristic of cellulose fiber networks; however, their wet strength frequently deteriorates under humid conditions due to the hydrophilic nature of cellulose. This study presents a novel conjugate additive, synthesized by grafting carbohydrate-binding modules onto amphoteric polyacrylamide (CBM3-AmPAM), aimed at enhancing the mechanical properties of cellulose fiber networks at the wet-end of papermaking. The incorporation of CBM3-AmPAM significantly improved performance compared to AmPAM alone, with stress-strain properties enhanced by 1130.34 % and 202.25 % under humid conditions at a 1 % dosage. Notably, the foldability of the cellulose fiber networks increased by 33 %. Employing quartz crystal microbalance with dissipation monitoring (QCM-D), the adsorption behaviors of CBM3, AmPAM, their conjugate (CBM3-AmPAM) and mixture (CBM3+AmPAM) onto fibers were assessed. Results indicated that CBM3-AmPAM exhibited notably robust and more irreversible adsorption compared to other tested formulations. This research highlights the potential of CBM3-AmPAM as an effective wet-end additive in papermaking and provides valuable insights into its interaction with cellulose fibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140771 | DOI Listing |
Materials (Basel)
February 2025
Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 19 Piastow Ave., 70-310 Szczecin, Poland.
Fiber-reinforced composites are widely utilized across various industries, including aerospace, automotive, and marine, due to their outstanding mechanical properties and lightweight characteristics. Natural fibers, as promising reinforcements, have the potential to replace synthetic fibers in certain areas to meet the growing demand for environmental protection and sustainability. These biocomposites offer numerous benefits, including reduced carbon footprints, diminished reliance on non-renewable resources, and increased natural biodegradability.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany.
Cohort studies consistently show that a high intake of cereal fiber and whole-grain products is associated with a decreased risk of type 2 diabetes (T2DM), cancer, and cardiovascular diseases. Similar findings are also reported for infectious and chronic inflammatory disorders. All these disorders are at least partially caused by inflammaging, a chronic state of inflammation associated with aging and Metabolic Syndrome.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Department of Materials Engineering and Metallurgy, University of São Paulo, São Paulo 05508-220, Brazil.
3D printing with biodegradable polymers such as polylactic acid (PLA) is a sustainable alternative to conventional petroleum-derived plastics. However, improving the mechanical properties of PLA remains a challenge. This study explores the incorporation of chemically treated hemp fibers to improve the interfacial adhesion and mechanical strength of PLA filaments.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China. Electronic address:
Foam materials hold great promise in construction and packaging applications. However, the non-biodegradability and poor thermal stability of petroleum-based foams present serious environmental and safety concerns. It is crucial to develop sustainable, eco-friendly foam fabrication methods that balance environmental responsibility with high performance.
View Article and Find Full Text PDFChempluschem
March 2025
University College London, The Bartlett School of Environment Energy and Resources, University College London, 14 Upper Woburn Place, WC1H 0NN, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cellulose-derived materials, like paper and cellulose acetate, are known to be vulnerable to degradation within museum collections. Studies have been conducted and degradation markers have been identified on these materials. However, the degradation of man-made cellulose-derived fibres in collections is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!