Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study focused on boron (B), an essential micronutrient for plant development that becomes toxic at high concentrations, adversely affecting plant growth and yield. Phosphite (PHI) is recognized for its easy absorption by plant leaves and roots and its well-documented positive effects on plant growth. The effects of phosphite (PHI-1, 2 g L⁻; PHI-2, 4 g L⁻) under boron stress (B, 2 mM) were evaluated in Zea mays. Under B stress, a 58% reduction in growth was observed in maize leaves. However, PHI applied at both concentrations positively influenced growth parameters and regulated water relations in the leaves of stressed plants. Under B stress, gas exchange was restricted, the photochemical quantum efficiency of PSII (Fv/Fm) was suppressed, and non-photochemical quenching (NPQ) values increased. Treatments with B + PHI-1 and B + PHI-2 enhanced carbon assimilation rates (A) by 37% and 23%, respectively. In OJIP transition parameters, it was observed that PHI-1 and PHI-2 treatments supported photochemical reactions by reducing the dissipated energy flux (DIo/RC). Additionally, high levels of H₂O₂ accumulation and lipid peroxidation occurred under B stress However, PHI treatments increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX), mitigating oxidative damage caused by B stress. Furthermore, PHI effectively preserved ascorbate regeneration and enhanced the ascorbate-glutathione cycle, contributing to the reduction of reactive oxygen species (ROS) accumulation. Consequently, PHI treatment demonstrated its effectiveness in mitigating boron toxicity by improving the antioxidant defense system, reducing ROS accumulation, and enhancing photosynthetic efficiency, thereby increasing stress tolerance in maize plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2025.109605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!