The crucial involvement of the Fat Mass and Obesity-associated (FTO) protein in both metabolic and non-metabolic diseases has been documented since its discovery. This enzyme, known as FTO, is a demethylase that belongs to the 2-oxoglutarate-dependent nucleic acid demethylases. Its primary function is to target N6-methyladenosine (mA) in RNA, which is crucial in regulating RNA stability, processing, and expression. This review facilitates understanding the FTO gene variations linked to Body Mass Index (BMI) and obesity, resulting in increased vulnerability to type 2 diabetes. While prior reviews have already discussed the link between FTO and BMI and its impact on type 2 diabetes, the current review additionally examines the emerging evidence suggesting a direct influence of the FTO gene on metabolism. Additionally, the paper discusses the alternative role of FTO and emphasizes the endophenotypes in neurological circuits and the demethylase function of FTO in neurodegenerative disorders. The review further examines the impact of FTO on several physiological systems and emphasizes the need to study FTO as a potential multitarget for future research and therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-025-10250-3 | DOI Listing |
J Neurosci
March 2025
Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
Early age at menarche (early AAM) and polycystic ovary syndrome (PCOS) are reproductive and metabolic disorders with overlapping pathophysiological and genetic features. Epidemiological studies suggest a link between these two conditions, both of which are characterized by dysregulation of the neuroendocrine pathways that control pulsatile gonadotropin-releasing hormone secretion, thus affecting gonadotropin release, particularly luteinizing hormone secretion. A common pathophysiology involving positive energy balance and abnormal metabolic status is evident in both disorders.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
The dysregulation of the M1/M2 macrophage balance plays a pivotal role in autoimmune diseases. However, the interplay between microRNAs (miRNAs) and N6-methyladenosine (m6A) modulation in regulating this balance remains poorly understood. Here, a significant reduction in miR-31-5p levels is observed in the lacrimal glands of rabbit autoimmune dacryoadenitis and the peripheral blood mononuclear cells (PBMCs) of Sjögren's syndrome (SS) dry eye patients.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Physics, Tarbiat Modares University, P.O Box 14115‑175, Tehran, Iran.
Gold nanorods (GNRs) are valued for their tunable surface plasmon resonance (SPR) and unique optical properties, but precise control over their size and shape remains challenging. Current synthesis techniques often yield polydisperse samples and require high concentrations of cytotoxic surfactants, limiting their biomedical applications. In this study, we introduce a novel electrochemical synthesis method that offers precise control of GNR characteristics by leveraging open circuit potential (OCP) data from colloidal synthesis.
View Article and Find Full Text PDFJ Frailty Aging
March 2025
Department of Psychobiology, Universidade Federal de São Paulo, Brazil. Electronic address:
Background: Muscle mass is associated with physical and functional performance across adulthood. Its reduction plays a crucial role in the development of age-related conditions such as frailty and sarcopenia. Genetic variations potentially impact muscle health, particularly in an aged population.
View Article and Find Full Text PDFNat Commun
March 2025
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Human GWAS have shown that obesogenic FTO polymorphisms correlate with lean mass, but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here, we use CRISPR to knock-in FTO into hESC-derived tissue models, to elucidate potentially hidden roles of FTO during development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!