SNAP-25, together with other SNARE proteins, drives fusion of synaptic vesicles with the nerve cell membrane, leading to neurotransmitter release. It is unique in contributing two α helices to the four-helix bundle known as the SNARE complex. Complex formation drives fusion as these proteins transform from a disordered to ordered (coiled-coil) state. SNAP-25 has two isoforms, -25A and -25B, but little is known of any structural differences, nor are there extensive reports of the structures of its two helical domains, SN1 and SN2. Thus, the benefit of having two distinct isoforms of SNAP-25, each with two distinct domains, is unknown. Here, we use circular dichroism spectroscopy and mass spectrometry to further characterize the secondary structure of SNAP-25A, SNAP-25B, SN1, SN2, and a cysteine-free version of SNAP-25A. We demonstrate that these proteins undergo structural transitions, with changing fractions of α helix, β sheet, and random coil. These different structures can be induced by varying the environmental conditions of ionic strength, pH, temperature, or redox state. We use triangle plots to directly display the change in ternary composition following changes in these four parameters. We report that SNAP-25A and SNAP-25B make distinctly different structural changes. We show that the secondary structure of SN1 is more variable than SN2. These data add to the ongoing literature characterizing SNAP-25 as an intrinsically disordered protein that is sensitive to environmental conditions in neuronal cells and may function as a redox sensor to modulate neurotransmitter release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2025.02.003DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
8
disordered protein
8
circular dichroism
8
drives fusion
8
neurotransmitter release
8
sn1 sn2
8
secondary structure
8
snap-25a snap-25b
8
environmental conditions
8
snap-25
5

Similar Publications

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.

View Article and Find Full Text PDF

Proteins with chemically regulatable phase separation are of great interest in the fields of biomolecular condensates and synthetic biology. Intrinsically disordered proteins (IDPs) are the dominating building blocks of biomolecular condensates which often lack orthogonality and small-molecule regulation desired to create synthetic biomolecular condensates or membraneless organelles (MLOs). Here, we discover a well-folded globular protein, lipoate-protein ligase A (LplA) from E.

View Article and Find Full Text PDF

Atomistic molecular dynamics simulations of intrinsically disordered proteins.

Curr Opin Struct Biol

March 2025

Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA; Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA. Electronic address:

Recent years have seen remarkable gains in the accuracy of atomistic molecular dynamics (MD) simulations of intrinsically disordered proteins (IDPs) and expansion in the types of calculated properties that can be directly compared with experimental measurements. These advances occurred due to the use of IDP-tested force fields and the porting of MD simulations to GPUs and other computational technologies. All-atom MD simulations are now explaining the sequence-dependent dynamics of IDPs; elucidating the mechanisms of their binding to other proteins, nucleic acids, and membranes; revealing the modes of drug action on them; and characterizing their phase separation.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of upper and lower motoneurons. The four most frequently mutated genes causing familial ALS (fALS) are C9orf72, FUS, SOD1, and TARDBP. Some of the related wild-type proteins comprise intrinsically disordered regions (IDRs) which favor their assembly in liquid droplets-the biophysical mechanism behind the formation of physiological granules such as stress granules (SGs).

View Article and Find Full Text PDF

Nonbonded Parameter Optimization Improving Simulation of Intrinsically Disordered Phosphoproteins.

J Chem Inf Model

March 2025

State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China.

Phosphorylated proteins play a crucial role in numerous cellular processes, acting as key regulators in signal transduction networks, cell expansion, and various biochemical reactions. Molecular dynamics (MD) simulations are powerful tools for exploring the dynamic conformations of phosphoproteins. However, conventional force fields often underestimate the radii of gyration (Rg) of phosphoproteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!