In this study, the solubility of rivaroxaban, a poorly water-soluble drug, was investigated in mixed solvent systems to address challenges in pharmaceutical formulation and bioavailability enhancement. Solubility optimization is essential for the effective delivery and therapeutic performance of rivaroxaban, as its low aqueous solubility limits oral bioavailability and necessitates innovative approaches for drug formulation. The study explored the role of primary alcohols combined with dichloromethane in improving solubility, emphasizing their industrial relevance in crystallization, purification, and drug manufacturing processes. To complement experimental insights, machine learning models were employed to predict rivaroxaban solubility based on temperature, solvent type, and mass fraction of dichloromethane. Three models-AdaBoost Gaussian process regression (ADAGPR), AdaBoost multilayer perceptron (ADAMLP), and AdaBoost LASSO regression (ADALASSO)-were evaluated using [Formula: see text], RMSE, and MAPE metrics. Among these, ADAGPR demonstrated superior performance with an R² score of [Formula: see text], outperforming ADAMLP [Formula: see text] and [Formula: see text]. It also achieved the lowest total RMSE [Formula: see text] and MAPE [Formula: see text], confirming its predictive precision and reliability. Optimal solubility conditions were identified at [Formula: see text] with a mass fraction of 0.8190 in a dichloromethane-methanol mixture, yielding a predicted solubility of [Formula: see text]. These findings highlight the potential of combining chemical engineering principles with advanced predictive modeling to optimize solubility in complex solvent systems, offering significant value to pharmaceutical development and process optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807219 | PMC |
http://dx.doi.org/10.1038/s41598-025-89093-y | DOI Listing |
Philos Trans A Math Phys Eng Sci
March 2025
Department of Statistics, University of Oxford, Oxford, UK.
During infectious disease outbreaks, delays in case reporting mean that the time series of cases is unreliable, particularly for those cases occurring most recently. This means that real-time estimates of the time-varying reproduction number, [Formula: see text], are often made using a time series of cases only up until a time period sufficiently far in the past that there is some confidence in the case counts. This means that the most recent [Formula: see text] estimates are usually out of date, inducing lags in the response of public health authorities.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2025
School of Engineering, Computing and Mathematics, Oxford Brooks University, Oxford, UK.
This study introduces an adaptive three-dimensional (3D) image synthesis technique for creating variational realizations of fibrous meniscal tissue microstructures. The method allows controlled deviation from original geometries by modifying parameters such as porosity, pore size and specific surface area of image patches. The unbiased reconstructed samples matched the morphological and hydraulic properties of original tissues, with relative errors generally below 10%.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76207, USA.
Direct-write additively manufactured (AM) high-performance lithium titanate (LiTiO) microwave RF ceramic with comparable density, dielectric constant, dielectric loss, and quality factor to traditionally made equivalents is demonstrated. Increasing the surface-to-volume ratio and interfacial free energy in designed electrosteric slurries is shown to be effective for driving pressureless sintering and porosity elimination. A relative density as high as 96.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Laser and Optical Engineering, University of Bonab, Bonab, 5551395133, Iran.
The magneto-optical device based on a periodic array of metal nanopyramids embedded in a film of Bi:YIG coated on the surface of a silver substrate, is optimized utilizing a computational simulation technique (CST Microwave Studio). Under coupling conditions through the two-dimensional grating, the TM-guided modes with narrow resonance are excited in the Bi:YIG film by the incident light, increasing hence the light-matter interaction. Such coupling results as the dips in the reflectance spectrum.
View Article and Find Full Text PDFNat Commun
March 2025
Boulder Research Labs, IMRA America, Inc., 1551 S Sunset St. Suite C, Longmont, CO, USA.
Optical-based terahertz sources are important for many burgeoning scientific and technological applications. Among such applications is precision spectroscopy of molecules, which exhibit rotational transitions at terahertz frequencies. Stemming from precision spectroscopy is frequency discrimination (a core technology in atomic clocks) and stabilization of terahertz sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!