Owing to inconsistencies in human B cell classification and the difficulty in distinguishing heterogeneous subpopulations, we present a protocol to construct gene regulatory networks and gene activity landscapes for human B cell developmental stages. We describe steps for acquiring bone marrow data; conducting single-cell downstream analysis; and leveraging the St. Jude Algorithm for the Reconstruction of Accurate Cellular Networks (SJARACNe), Network-based Bayesian Inference of Drivers (NetBID2), and single-cell Mutual Information-based Network Engineering Ranger (scMINER) algorithms for network-based analysis. Our protocol elucidates the biological characteristics of developmental stages in human B cells. For complete details on the use and execution of this protocol, please refer to Huang et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850216PMC
http://dx.doi.org/10.1016/j.xpro.2025.103614DOI Listing

Publication Analysis

Top Keywords

human cell
8
developmental stages
8
protocol
4
protocol predicting
4
predicting single-cell
4
single-cell network-based gene
4
network-based gene activity
4
activity landscape
4
landscape during human b cell
4
during human b cell development
4

Similar Publications

Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.

View Article and Find Full Text PDF

Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.

Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.

View Article and Find Full Text PDF

Peroxiredoxins (Prx) are ubiquitous Cys peroxidases regulated by sulfinylation, a modification that occurs when the sulfenic acid generated on the catalytic Cys by peroxide reduction reacts with a second molecule of peroxide. In the Prx1 family, sulfinylation sensitivity is controlled by competition between a structural transition from a fully folded (FF) to locally unfolded (LU) conformation and the chemical step of sulfinylation. The initial peroxide reduction relies on a conserved catalytic hydroxylated residue that allows peroxide optimal activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on β2-microglobulin (β2-MG) as a predictor of prognosis in patients with diffuse large B-cell lymphoma (DLBCL), involving 98 patients over two years.
  • The critical threshold for β2-MG was identified as 3.285 µg/L, with patients below this level showing better survival rates compared to those above it during follow-up.
  • Elevated levels of β2-MG, along with LDH and CRP, were determined to be independent risk factors influencing overall survival in DLBCL patients, leading to the development of a prognostic prediction model that effectively correlated predicted outcomes with actual results.
View Article and Find Full Text PDF

Background: Several particular kinds of typical morphology characteristics of leukemic blasts associated with the specific subtypes of leukemia have been reported. However, B acute lymphoblastic leukemia/lymphoma (B-ALL/LBL) has rarely been reported. The purpose of this study was to investigate the correlation of TCF3::PBX1 fusion with multiple clefts nuclei of blasts in patients with B-ALL/LBL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!