The integration of 3D printing into the pharmaceutical sciences opens new possibilities for personalized medicine. Poly(lactide) (PLA), a biodegradable and biocompatible polymer, is highly suitable for biomedical applications, particularly in the context of 3D printing. However, its processability often requires the addition of plasticizers. This study investigates the use of phase diagram modeling as a tool to guide the rational selection of plasticizers and to assess their impact on the thermodynamic and kinetic stability of PLA-based amorphous solid dispersions (ASDs) containing active pharmaceutical ingredients (APIs). Thermodynamic stability against API recrystallization was predicted based on the API solubility in PLA and Plasticizer-PLA carriers using the Conductor-like Screening Model for Real Solvents (COSMO-RS), while the kinetic stability of the ASDs was evaluated by modeling the glass transition temperatures of the mixtures. Two APIs, indomethacin (IND) and naproxen (NAP), with differing glass-forming abilities (i.e., recrystallization tendencies), and three plasticizers, triacetin (TA), triethyl citrate (TEC), and poly(L-lactide-co-caprolactone) (PLCL), were selected for investigation. The physical stability of ASD formulations containing 9 wt% API and plasticizer to PLA in two ratios, 10:81 and 20:71 w/w %, was monitored over time using differential scanning calorimetry and X-ray powder diffraction and compared with phase diagram predictions. All formulations were predicted to be thermodynamically unstable; however, those containing no plasticizer or with TEC and TA at 10 wt% were predicted to exhibit some degree of kinetic stability. Long-term physical studies corroborated these predictions. The correlation between the predicted phase behavior and long-term physical stability highlights the potential of phase diagram modeling as a tool for the rational design of ASDs in pharmaceutical 3D printing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2025.114657 | DOI Listing |
ACS Nano
March 2025
School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
The self-assemblies of topological complex block copolymers, especially the AB type miktoarm star ones, are fascinating topics in the soft matter field, which represent typical self-assembly behaviors analogous to those of biological membranes. However, their diverse topological asymmetries and versatile spontaneous curvatures result in rather complex phase separations that deviate significantly from the common mechanisms. Thus, numerous trial-and-error experiments with tremendous parameter space and intricate relationships are needed to study their assemblies.
View Article and Find Full Text PDFEnviron Geochem Health
March 2025
Department of Geology, V.O.Chidambaram College, Thoothukudi, India.
Submarine Groundwater Discharge (SGD) has a global impact, affecting coastal aquifers, the freshwater environment, and contributing to coastal development. The present study investigates the impact of Submarine Groundwater Discharge (SGD) on groundwater geochemistry along the coast from Chettikulam to Kolachel in Southern India, with an emphasis on regional changes pre and post monsoons in the years 2023-2024. A total of 80 groundwater samples (40 from both monsoons) were analyzed using hydrochemical plots such as Piper, Wilcox, Gibbs, and Hydrochemical Facies Evolution Diagrams (HFE-D), along with AquaChem software and spatial mapping techniques.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2025
Molecular PhotoScience Research Center, Kobe University, Rokkoudai 1-1, Kobe, Hyogo, 657-8501, JAPAN.
Recent theoretical and experimental studies on the frustration-induced skyrmion crystal (SkX) in centrosymmetric magnets are reviewed, with some emphasis on their symmetry and topological aspects. Special importance of frustration and chirality is highlighted. Theories cover the studies based on both the spin models and the electronic models.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France.
Janus particles, with their intrinsic asymmetry, are attracting major interest in various applications, including emulsion stabilization, micro/nanomotors, imaging, and drug delivery. In this context, Janus polymersomes are particularly attractive for synthetic cell development and drug delivery systems. While they can be achieved by inducing a phase separation within their membrane, their fabrication method remains largely empirical.
View Article and Find Full Text PDFInt J Thermophys
March 2025
Departamento de Química, CQC-IMS, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
Unlabelled: The present article presents the solid-liquid phase diagram of a binary system composed of an -alkane with an odd number of carbon atoms, namely, -nonane (-C), with an even-numbered one, namely -decane (-C). This work is part of a series of phase equilibrium studies on -alkanes for low-temperature thermal energy storage (TES) applications. The ultimate purpose of this work is to investigate the adequacy of this binary system to be used as a Phase Change Material (PCM) at low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!