New insights on antibacterial mode of action of blue-light photoactivated berberine and curcumin-antibiotic combinations against Staphylococcus aureus.

Photodiagnosis Photodyn Ther

LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal. Electronic address:

Published: February 2025

Antimicrobial photodynamic inactivation (aPDI), using photosensitisers in combination with antibiotics, is a promising multi-target strategy to address antibiotic resistance, particularly in wound infections. This study aimed to elucidate the antibacterial mode of action of combinations of berberine (Ber) or curcumin (Cur) with selected antibiotics (Ber-Ab or Cur-Ab) under blue light irradiation (420 nm) against Staphylococcus aureus, including methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Multiple physiological parameters were assessed using complementary assays (fluorometry, epifluorescence microscopy, flame emission and atomic absorption spectroscopy, zeta potential, flow cytometry, and the plate agar method) to examine the effect on ROS production, membrane integrity, DNA damage, motility and virulence factors of S. aureus. Results indicated that blue light photoactivated Ber-Ab and Cur-Ab combinations led to substantial ROS generation, even at low concentrations, causing oxidative stress that severely impacted bacterial membrane integrity (approximately 90 % in MRSA and 40 % in MSSA). Membrane destabilization was further confirmed by elevated intercellular potassium release (≈ 2.00 and 2.40 µg/mL in MRSA and MSSA, respectively). Furthermore, significant DNA damage was observed in both strains (≈ 50 %). aPDI treatment with blue light also reduced S. aureus pathogenicity by impairing motility and inhibiting key virulence factors such as proteases, lipases, and gelatinases, all of which play key roles in the infectious process. Overall, Ber-Ab combinations demonstrated the highest efficacy across all parameters tested, highlighting for the first time the multi-target therapeutic potential of this phytochemical-based aPDI strategy to combat antibiotic-resistant S. aureus infections and improve wound infection treatment outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2025.104514DOI Listing

Publication Analysis

Top Keywords

blue light
12
antibacterial mode
8
mode action
8
staphylococcus aureus
8
ber-ab cur-ab
8
membrane integrity
8
dna damage
8
virulence factors
8
mrsa mssa
8
aureus
5

Similar Publications

Background: The cyst-forming coccidia of the genus Sarcocystis (Sarcocystidae) are widespread protists of mammals, particularly of domestic and wild ruminants. Research on genus Sarcocystis in wild members of the subfamily Caprinae is, however, rather limited. Sarcocystis in the Alpine ibex (Capra ibex) have only been investigated in depth once and then solely by morphological techniques.

View Article and Find Full Text PDF

CRISPR-Cas-Based Diagnosis of Geminiviruses.

Methods Mol Biol

March 2025

Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, India.

Successful disease management relies on rapid and accurate identification of the causal agent. Begomoviruses (family Geminiviridae) cause severe economic losses and pose a serious threat to sustainable agriculture. Here, we describe a clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid detection method utilizing the CRISPR/Cas12a and CRISPR/Cas13a system for begomoviruses used in our laboratory.

View Article and Find Full Text PDF

Carbon Quantum Dots from Fallen Leaves of Lonicera caerulea L.: An Innovative Plant Growth Promoter and Fruit Quality Enhancer.

Environ Res

March 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China. Electronic address:

With increasing environmental pollution and resource wastage, utilizing waste for high-value applications has become crucial. This study explores the preparation of carbon dots (CDs) from blue honeysuckle leaves and their potential in enhancing plant photosynthesis. CDs derived from these leaves have a particle size of ∼2.

View Article and Find Full Text PDF

Exploiting Photohalide Generation in Shape and Multichromatic Color Patterning of Polymer-Perovskite Nanocomposites.

J Am Chem Soc

March 2025

Polymer Science and Engineering Department, Conte Center for Polymer Science Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States.

The ability to arrange brightly fluorescent nanoscale materials into well-defined patterns is critically important in advanced optoelectronic structures. Traditional methods for doing so generally involve depositing different color quantum dot "inks," irradiating reactive (e.g.

View Article and Find Full Text PDF

This study presents a grey-to-colourless hybrid electrochromic device combining a novel red-to-colourless polymer with blue-to-colourless Prussian blue. The device achieves a neutral tint in both the dark and bleached states, with notable changes in visible light transmittance and fast response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!