A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sun Glint-Aware Restoration (SUGAR): a robust sun glint correction algorithm for UAV imagery to enhance monitoring of turbid coastal environments. | LitMetric

Sun Glint-Aware Restoration (SUGAR): a robust sun glint correction algorithm for UAV imagery to enhance monitoring of turbid coastal environments.

Environ Monit Assess

Engineering and Project Management Division, Maritime and Port Authority of Singapore, Singapore, 119963, Singapore.

Published: February 2025

Sun glint contamination on unmanned aerial vehicles (UAV) imagery is a ubiquitous problem and poses a significant impediment in the retrieval of water quality parameters for coastal monitoring applications. Previous studies using near-infrared (NIR) and regression-based sun glint corrections have shown overcorrection at turbid regions as water-leaving NIR radiance is non-negligible. A spatial shift in the band channels would also result in suboptimal correction in the visible spectrum. Recent total variation (TV) methods show promise in reducing spectral variation associated with glint-affected regions and achieve effective correction of sun glint while leaving non-glint regions largely unaltered. To that end, this study proposes an open-source Sun Glint-Aware Restoration (SUGAR) algorithm that bridges principles in NIR and TV methods for the effective correction of sun glint in multispectral and hyperspectral UAV imagery. The present study shows that SUGAR achieves the best sun glint correction performance among existing regression and pixel-based sun glint correction methods when applied on UAV imagery of turbid and shallow regions. Around 40-80% of the total variation at glint-affected regions have been reduced while preserving features in non-glint regions. Validation of SUGAR with in situ UAV flight surveys and turbidity measurements in the coastal region of Singapore demonstrated significant improvement in turbidity retrieval, with root-mean-squared error (RMSE) reducing from 0.464 to 0.183 FNU and 0.551 to 0.285 FNU for multispectral and hyperspectral imagery, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-025-13702-6DOI Listing

Publication Analysis

Top Keywords

sun glint
28
uav imagery
16
glint correction
12
sun
9
sun glint-aware
8
glint-aware restoration
8
restoration sugar
8
total variation
8
glint-affected regions
8
effective correction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!