A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards high mobility and adaptive mode transitions: Transformable wheel-biped humanoid locomotion strategy. | LitMetric

Towards high mobility and adaptive mode transitions: Transformable wheel-biped humanoid locomotion strategy.

ISA Trans

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing, 100081, China; National Key Lab of Autonomous Intelligent Unmanned Systems, Beijing, 100081, China. Electronic address:

Published: February 2025

Wheel-biped humanoid robots offer a promising solution that combines the bipedal locomotion and manipulation capabilities of humanoids with the mobility advantages of wheeled robots. However, achieving high mobility and adaptive wheel-foot transitions while maintaining essential bipedal functionality in a transformable wheel-biped configuration (TWBC) presents a significant challenge. To address this, this paper proposes a transformable wheel-humanoid framework (TWHF), which enhances traditional humanoid robots by incorporating a compact, decoupled wheeled subsystem. This design effectively balances high-speed wheeling, seamless mode transitions, and fundamental bipedal locomotion. A novel key phase decomposition (KPD) methodology is introduced to analyze and decouple transition motions, providing structured guidance for subsystem design, motion planning, and control. Transition reference motions are optimized using a particle swarm optimization-based motion optimization (PSOMO) approach, leveraging sagittal modeling to ensure dynamic stability and kinematic feasibility. Additionally, the proposed trunk-ankle collaborative control (TACC) strategy further enhances transition adaptability to terrain discrepancies. Extensive experiments conducted on the wheel-humanoid BHR8-2 validate the proposed TWHF, demonstrating stable hybrid locomotion across diverse terrains and achieving wheeling speeds exceeding 10 km/h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2025.01.029DOI Listing

Publication Analysis

Top Keywords

high mobility
8
mobility adaptive
8
mode transitions
8
transformable wheel-biped
8
wheel-biped humanoid
8
humanoid robots
8
bipedal locomotion
8
subsystem design
8
adaptive mode
4
transitions transformable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!