A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multilevel ecological interactions: Impact of weather, forest extreme events and seed production on squirrel population dynamics. | LitMetric

In resource-limited producer-consumer systems, environmental variables such as weather, habitat structure, and resource availability interact to shape consumer dynamics. We conducted a comparative analysis on territorial Fremont's squirrel (Tamiasciurus fremonti) in Arizona mountain ranges (three sites) and non-territorial Eurasian red squirrel (Sciurus vulgaris) in the Italian Alps (five sites) to investigate the effects of forest composition, pulsed seed resources, weather, and climate change-induced forest disturbances on population density. We also explored potential synchrony in spatial and temporal dynamics between squirrel populations, driven by endogenous and exogenous processes. Our long-term, multi-site datasets revealed shared density-dependent patterns: annual oscillations in Fremont's squirrel populations and biennial oscillations in Eurasian red squirrels. Both species exhibited strong bottom-up responses, with higher densities following tree-seed production and warmer spring temperatures. Despite the absence of synchronized trends in population density across time or regions, we found consistent responses to resource availability and abiotic conditions, demonstrating shared mechanisms across ecologically distinct systems. By integrating field data, remotely sensed forest disturbances, and multi-factorial modeling, this study highlights the role of climate, forest dynamics, and climate change-induced forest disturbance in shaping population processes in pulsed resource systems. Our findings underscore the importance of understanding producer-consumer interactions under climate change, providing globally relevant insights into the interplay of abiotic drivers, species-specific behaviours, and ecological resilience. These results contribute to advancing strategies for wildlife conservation and forest management in the face of ongoing environmental change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178713DOI Listing

Publication Analysis

Top Keywords

resource availability
8
fremont's squirrel
8
eurasian red
8
climate change-induced
8
change-induced forest
8
forest disturbances
8
population density
8
squirrel populations
8
forest
7
squirrel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!