As an alternative compound of bisphenol A (BPA), bisphenol B (BPB) was widely used in plastic materials. The potential actions of BPB on the function of Leydig cells through the regulation of H3K27me3 and H3K9me3 remains unclear. Our goal was to assess how BPB influences Leydig cell function via histone modifications mediated by H3K27me3 and H3K9me3. Male 56-day-old Sprague-Dawley rats were given with 0, 50, 100, and 200 mg/kg/day of BPB by the oral administration for 14 days to study the impact of BPB on the function of Leydig cells in rats. The findings indicated that BPB significantly reduced the serum testosterone levels at the dose of 100 mg/kg and 200 mg/kg and follicle-stimulating hormone levels at the doses of 50, 100, and 200 mg/kg, while increasing estradiol levels at the dose of 200 mg/kg. BPB did not alter the numbers of CYP11A1 Leydig cells and SOX9 Sertoli cells, but it downregulated the expression of key genes in testosterone synthesis pathway (Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, Hsd11b1, Hsd17b3, and Insl3) and their corresponding protein levels. Notably, BPB significantly boosted the expressions of histone methylation markers like EEF1A1, SUZ12, EED, EZH2, H3K27me3, and H3K9me3 in vivo. H3K27me3 and H3K9me3 levels were enhanced at the proximal promoters of Lhcgr, Cyp11a1, and Star through ChIP and PCR analyses. Furthermore, adult Leydig cells were extracted and cultured with BPB (0, 10, 50, 100, and 200 μM) alone or in combination with H3K27me3 antagonist GSK-J4. The results demonstrated that BPB significantly decreased testosterone output, which was counteracted by GSK-J4 to reverse BPB-mediated testosterone suppression. Additionally, BPB significantly elevated the levels of EEF1A1, EEF1A2, EED, H3K27me3, and H3K9me3 in vitro. BPB could potentially hinder the growth and function of Leydig cells by modulating H3K27me3 and H3K9me3. The findings of the study indicate the involvement of histone methylation (H3K27me3) in BPB-induced steroidogenic dysfunction, emphasizing the correlation between histone modifications and male reproductive toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2025.117847 | DOI Listing |
J Chem Phys
March 2025
Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, USA.
Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach.
View Article and Find Full Text PDFX-Chromosome Inactivation (XCI) involves epigenetic pathways to equalize X-linked gene expression between female and male mammals. XCI is dynamic in female B cells, as cytological enrichment of Xist RNA and heterochromatic marks on the inactive X-chromosome (Xi) are absent in naïve B cells yet return following mitogenic stimulation. Here, we asked whether any heterochromatic histone marks are present on the Xi in naïve B cells, and whether Xist RNA is required for their deposition and retention following stimulation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2025
Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Precision Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China. Electronic address:
As an alternative compound of bisphenol A (BPA), bisphenol B (BPB) was widely used in plastic materials. The potential actions of BPB on the function of Leydig cells through the regulation of H3K27me3 and H3K9me3 remains unclear. Our goal was to assess how BPB influences Leydig cell function via histone modifications mediated by H3K27me3 and H3K9me3.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.
Chemoresistance represents a major threat to the treatment of human cancers, including cholangiocarcinoma (CHOL). Aberrant epigenetic events contribute most to the progression of CHOL and chemotherapy efficacy. PHF10, one subunit of SWI/SNF complex, expressed highly in tumours that correlated with tumorigenesis.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Microbiology, University of Georgia, Athens, GA, 30602 USA.
Polycomb group (PcG) proteins form chromatin modifying complexes that stably repress lineage- or context-specific genes in animals, plants, and some fungi. Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) to assemble repressive chromatin. In the model fungus , H3K27me3 deposition is controlled by the H3K36 methyltransferase ASH1 and components of constitutive heterochromatin including the H3K9me3-binding protein HETEROCHROMATIN PROTEIN 1 (HP1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!