Classical spin liquids (CSLs) are intriguing states of matter that do not exhibit long-range magnetic order and are characterized by an extensive ground-state degeneracy. Adding quantum fluctuations, which induce dynamics between these different classical ground states, can give rise to quantum spin liquids (QSLs). QSLs are highly entangled quantum phases of matter characterized by fascinating emergent properties, such as fractionalized excitations and topological order. One such exotic quantum liquid is the [Formula: see text] QSL, which can be regarded as a resonating valence bond (RVB) state formed from superpositions of dimer coverings of an underlying lattice. In this work, we unveil a hidden large-scale structural property of archetypal CSLs and QSLs known as hyperuniformity, i.e., normalized infinite-wavelength density fluctuations are completely suppressed in these systems. In particular, we first demonstrate that classical ensembles of close-packed dimers and their corresponding quantum RVB states are perfectly hyperuniform in general. Subsequently, we focus on a ruby-lattice spin liquid that was recently realized in a Rydberg-atom quantum simulator, and show that the QSL remains effectively hyperuniform even in the presence of a finite density of spinon and vison excitations, as long as the dimer constraint is still largely preserved. Moreover, we demonstrate that metrics based on the framework of hyperuniformity can be used to distinguish the QSL from other proximate quantum phases. These metrics can help identify potential QSL candidates, which can then be further analyzed using more advanced, computationally intensive quantum numerics to confirm their status as true QSLs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831143 | PMC |
http://dx.doi.org/10.1073/pnas.2416111122 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
Low-energy excitations play a key role in all condensed-matter systems, yet there is limited understanding of their nature in glasses, where they correspond to local rearrangements of groups of particles. Here, we introduce an algorithm to systematically uncover these excitations up to the activation energy scale relevant to structural relaxation. We use it in a model system to measure the density of states on a scale never achieved before, confirming that this quantity shifts to higher energy under cooling, precisely as the activation energy does.
View Article and Find Full Text PDFNat Commun
March 2025
Department of Physics, The Ohio State University, Columbus, OH, USA.
We propose a mechanism to explain the emergence of an intermediate gapless spin liquid phase in the antiferromagnetic Kitaev model in an externally applied magnetic field, sandwiched between the well-known gapped chiral spin liquid and the gapped partially polarized phase. We propose that, in moderate fields, π-fluxes nucleate in the ground state and trap Majorana zero modes. As these fluxes proliferate with increasing field, the Majorana zero modes overlap creating an emergent quantum Majorana metallic state with a "Fermi surface" at zero energy.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2025
Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3, Institutskaya str., Novosibirsk, 630090, Russia.
This study focuses on primary radical ionic species created in liquid carbonates upon high-energy radiation. We studied the radiation-induced fluorescence intensity decays observed from solutions of luminophores in dimethyl, diethyl, ethylene, and propylene carbonates. Based on the effects of external magnetic and electric fields on the fluorescence decays on a timescale of 1-60 ns and quantum chemical calculations, we found that in all studied carbonates, solvent ionization was rapidly followed by the formation of comparatively long-lived positive charge and unpaired electron spin carriers.
View Article and Find Full Text PDFJ Chem Phys
March 2025
International Tomography Center SB RAS, Novosibirsk, Russian Federation.
In the present work, we elucidate the inherent loss of net magnetization (⟨Iz⟩) in parahydrogen-induced polarization (PHIP) experiments with magnetic field cycling (MFC) for spin systems containing magnetically equivalent protons. The effects are shown for propane and diethyl ether as representative examples of potential hyperpolarized MRI contrast agents, but the findings of this work are equally applicable to other multispin systems in the liquid or gas phase. These results are relevant to both adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiments (where 1H nuclei are polarized) and MFC protocols used to transfer parahydrogen spin order to a heteronucleus such as 13C.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
March 2025
1Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; email:
Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!