Photoacoustic tomography (PAT) is an emerging imaging modality with widespread applications in both preclinical and clinical studies. Despite its promising capabilities to provide high-resolution images, the visualization of vessels might be hampered by skin signals and attenuation in tissues. In this study, we have introduced a framework to retrieve deep vessels. It combines a deep learning network to segment skin layers and an adaptive weighting algorithm to compensate for attenuation. Evaluation of enhancement using vessel occupancy metrics and signal-to-noise ratio (SNR) demonstrates that the proposed method significantly recovers deep vessels across various body positions and skin tones. These findings indicate the method's potential to enhance quantitative analysis in preclinical and clinical photoacoustic research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800082 | PMC |
http://dx.doi.org/10.1016/j.pacs.2025.100690 | DOI Listing |
Aging Dis
March 2025
Medical School of Chinese PLA, Beijing, China.
Osteoarthritis (OA) is the most common musculoskeletal disease globally and is the main reason for the chronic pain and disability in people over sixty-five worldwide. Degradation of the articular cartilage, synovial inflammation and osteophyte formation are widely acknowledged as the primary pathological manifestations of OA. OA affects more than 300 million people all over the world, bringing extremely large socioeconomic burden.
View Article and Find Full Text PDFPhotoacoustics
April 2025
College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
Imaging speed is critical for photoacoustic microscopy as it affects the capability to capture dynamic biological processes and support real-time clinical applications. Conventional approaches for increasing imaging speed typically involve high-repetition-rate lasers, which pose a risk of thermal damage to samples. Here, we propose a deep-learning-driven optical-scanning undersampling method for photoacoustic remote sensing (PARS) microscopy, accelerating imaging acquisition while maintaining a constant laser repetition rate and reducing laser dosage.
View Article and Find Full Text PDFBiomaterials
March 2025
Department of Chemistry, Korea University, Seoul 02841, Korea. Electronic address:
Small molecule-based multifunctional optical diagnostic materials have garnered considerable interest due to their highly customizable structures, tunable excited-state properties, and remarkable biocompatibility. We herein report the synthesis of a multifaceted photosensitizer, PPQ-CTPA, which exhibits exceptional efficacy in generating Type I reactive oxygen species (ROS) and thermal energy under near-infrared-II (NIR-II, >1000 nm) laser excitation at 1064 nm, thereby combining photodynamic therapy (PDT) and photothermal therapy (PTT) functionalities. To enhance therapeutic efficacy, we engineered lonidamine (LND) by conjugating it with triphenylphosphonium (TPP) cations, producing LND-TPP.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China.
Semiconducting open-shell radicals (SORs) have promising potential for the development of phototheranostic agents, enabling tumor bioimaging and boosting tumorous reactive oxygen species (ROS). Herein, a new class of semiconducting perylene diimide (PDI), designated as PDI(Br) with various numbers of bromine (Br) atoms modified on PDI's bay/ortho positions is reported. PDI(Br) is demonstrated to transform into a radical anion, [PDI(Br)], in a reducing solution, with a typical g-value of 2.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea.
Photoacoustic brain imaging (PABI) has emerged as a promising biomedical imaging modality, combining high contrast of optical imaging with deep tissue penetration of ultrasound imaging. This review explores the application of photoacoustic imaging in brain tumor imaging, highlighting the synergy between nanomaterials and state of the art optical techniques to achieve high-resolution imaging of deeper brain tissues. PABI leverages the photoacoustic effect, where absorbed light energy causes thermoelastic expansion, generating ultrasound waves that are detected and converted into images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!