The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4), also known as Proline-rich transmembrane protein 1 (PRRT1), is an AMPA-type glutamate receptor (AMPAR) auxiliary factor that is necessary for maintaining extra-synaptic pools of GluA1. Loss of SynDIG4, and the subsequent decrease in extra-synaptic GluA1, has been found to significantly impact synaptic plasticity in the hippocampus. However, how SynDIG4 establishes and maintains these pools is unclear. Previous studies suggested that endocytic machinery is important for maintaining a pool of mobile surface AMPARs, and that proteins associated with such cellular machinery are critical for proper protein trafficking and internalization. Given that SynDIG4 co-localizes with GluA1 in early and recycling endosomes in cultured hippocampal neurons, we sought to identify the sorting signals that target SynDIG4 to endosomes to further elucidate the role of SynDIG4 in GluA1 trafficking. In this study, we report that SynDIG4 possesses a YxxΦ sorting motif, 178-YVPV-181, responsible for binding to the AP-2 complex cargo-sorting subunit μ2. This motif appears critical for proper SynDIG4 internalization, as SynDIG4 mutant 178-AVPA-181, which disrupts binding to μ2, induces aberrant SynDIG4 accumulation at the plasma-membrane of heterologous cells and primary rat hippocampal neurons. We also show that SynDIG4 mutants lacking an endocytic signal co-localize with GluA1 but less so with GluA2 on the surface of heterologous cells. Furthermore, we show that another family member, SynDIG1, is enriched in the trans-Golgi network (TGN) and can traffic between the TGN and plasma membrane. We have identified a non-canonical μ2 binding sequence in SynDIG1 that induces aberrant accumulation at the plasma membrane of heterologous cells and primary rat hippocampal neurons, suggesting a conserved role for μ2-mediated endocytosis within the SynDIG family. These results provide important insight into the mechanisms by which SynDIG proteins are targeted to endosomal compartments as a step in understanding SynDIG-mediated regulation of AMPAR trafficking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798926 | PMC |
http://dx.doi.org/10.3389/fncel.2024.1526034 | DOI Listing |
Cold Spring Harb Protoc
March 2025
Department of Biology, Whitman College, Walla Walla, Washington 99362, USA
The AuxInYeast system is a synthetic biology tool that facilitates complex biochemical analysis of the plant auxin hormone signaling pathway. As a plant synthetic biology chassis, yeast offers rapid growth, well-established genetic and biochemical tools, and core eukaryotic cellular machinery compatible with heterologous plant gene expression. The AuxInYeast system for maize consists of yeast cells containing the minimal necessary set of plant auxin signaling parts: a receptor (ZmTIR1/AFB), repressor (ZmIAA), corepressor (REL2), transcription factor (ZmARF), and auxin response -element (auxRE).
View Article and Find Full Text PDFJ Immunol
January 2025
Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.
Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
Human clinical trials have reported immunological outcomes can differ between ipsilateral (same side) and contralateral (alternate sides) prime-boost vaccination. However, our mechanistic understanding of how keeping or shifting the anatomical sites of immunization impacts the resultant germinal centers (GCs) and antibody responses is limited. Here, we use an adjuvanted SARS-CoV-2 spike vaccine to dissect GC dynamics in draining lymph nodes and serological outcomes following ipsilateral or contralateral prime-boost vaccination in C57BL/6 mice.
View Article and Find Full Text PDFJ Immunol
February 2025
Gritstone Bio, Inc, Emeryville, CA, United States.
While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines.
View Article and Find Full Text PDFmBio
March 2025
Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA.
Cell surface proteins determine how cells interact with their biotic and abiotic environments. In social myxobacteria, a C-terminal protein sorting tag called MYXO-CTERM is universally found within the Myxococcota phylum, where their genomes typically contain dozens of proteins with this motif. MYXO-CTERM harbors a tripartite architecture: a short signature motif containing an invariant cysteine, followed by a transmembrane helix and a short arginine-rich C-terminal region localized in the cytoplasm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!