Disparities in health or well-being experienced by minority groups can be difficult to study using the traditional exposure-outcome paradigm in causal inference, since potential outcomes in variables such as race or sexual minority status are challenging to interpret. Causal decomposition analysis addresses this gap by positing causal effects on disparities under interventions to other intervenable exposures that may play a mediating role in the disparity. While invoking weaker assumptions than causal mediation approaches, decomposition analyses are often conducted in observational settings and require uncheckable assumptions that eliminate unmeasured confounders. Leveraging the marginal sensitivity model, we develop a sensitivity analysis for weighted causal decomposition estimators and use the percentile bootstrap to construct valid confidence intervals for causal effects on disparities. We also propose a two-parameter reformulation that enhances interpretability and facilitates an intuitive understanding of the plausibility of unmeasured confounders and their effects. We illustrate our framework on a study examining the effect of parental support on disparities in suicidal ideation among sexual minority youth. We find that the effect is small and sensitive to unmeasured confounding, suggesting that further screening studies are needed to identify mitigating interventions in this vulnerable population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810048PMC
http://dx.doi.org/10.1002/sim.70010DOI Listing

Publication Analysis

Top Keywords

sensitivity analysis
8
analysis weighted
8
weighted causal
8
sexual minority
8
causal decomposition
8
causal effects
8
effects disparities
8
unmeasured confounders
8
causal
7
calibrated sensitivity
4

Similar Publications

Cancer therapy-related cardiac dysfunction (CTRCD) is a major concern for patients undergoing cardiotoxic cancer treatments. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have shown cardioprotective effects in both diabetic and non-diabetic populations. However, their impact on CTRCD risk remains uncertain.

View Article and Find Full Text PDF

Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these factors collectively govern stability and function across diverse temperatures remains unresolved. Cytosolic malate dehydrogenase (cMDH), a citric acid cycle enzyme, is an ideal model for studying these mechanisms due to its temperature-sensitive flexibility and broad presence in species from diverse thermal environments.

View Article and Find Full Text PDF

Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers.

View Article and Find Full Text PDF

Objective: The study investigated effects of peony callus extracts (PCE) on the protective efficacy against Ultraviolet B (UVB)-induced photoageing, using in vitro and in vivo studies. The research focused on PCE's ability to protect against inflammatory factors, DNA damage and accumulation of senescent cells, along with the evaluation of the extract's potential anti-photoageing benefits to skin.

Methods: Human keratinocyte cell line (HaCaT cells), mast cells and fibroblasts were used to evaluate the role of PCE in anti-photoageing.

View Article and Find Full Text PDF

Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!