Assessing and quantifying recruitability are important for characterizing ARDS severity and for reducing or preventing the atelectrauma caused by the cyclic opening and closing of pulmonary units. Over the years, several methods for recruitment assessment have been developed, grouped into three main approaches: 1) Quantitative CT Scanning: This method accurately measures the amount of atelectatic lung tissue that regains aeration; 2) Regional Gas Volume Measurement: Based on anatomical markers, this approach assesses gas volume within a specified lung region; 3) Compliance-Based Gas Volume Measurement: This technique compares actual gas volume at a given pressure to expected values, assuming respiratory system compliance is constant within the explored pressure range. Additional methods, such as lung ultrasonography and electrical impedance variation, have also been explored. This paper details the distribution of opening and closing pressures throughout the lung parenchyma, which underpin the concept of recruitability. The distribution of recruitable regions corresponds to atelectasis distribution, with the pressure needed for recruitment varying according to whether the atelectasis is "loose" or "sticky." We also discuss the effects of different PEEP levels on preventing atelectrauma, the importance of keeping some lung areas closed throughout the respiratory cycle, and briefly cover the roles of sigh ventilation, prone positioning, and the closed lung approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800554PMC
http://dx.doi.org/10.1186/s13054-025-05263-4DOI Listing

Publication Analysis

Top Keywords

gas volume
16
preventing atelectrauma
8
opening closing
8
volume measurement
8
lung
6
assessment recruitment
4
recruitment bedside
4
bedside challenges
4
challenges future
4
future directions
4

Similar Publications

This study systematically investigates the formation mechanism and development characteristics of the "foamy oil" phenomenon during pressure depletion development of high-viscosity crude oil through a combination of physical experiments and numerical simulations. Using Venezuelan foamy oil as the research subject, an innovative heterogeneous pore-etched glass model was constructed to simulate the pressure depletion process, revealing for the first time that bubble growth predominantly occurs during the migration stage. Experimental results demonstrate that heavy components significantly delay degassing by stabilizing gas-liquid interfaces, while the continuous gas-liquid diffusion effect explains the unique development characteristics of foamy oil-high oil recovery and delayed phase transition-from a microscopic perspective.

View Article and Find Full Text PDF

Study on Oil Displacement Mechanism of Betaine/Polymer Binary Flooding in High-Temperature and High-Salinity Reservoirs.

Molecules

March 2025

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

As an efficient and economical method to enhance oil recovery (EOR), it is very important to explore the applicability of chemical flooding under harsh reservoir conditions, such as high temperature and high salinity. We designed microscopic visualization oil displacement experiments to comprehensively evaluate the oil displacement performance of the zwitterionic surfactant betaine (BSB), a temperature- and salinity-resistant hydrophobically modified polymer (BHR), and surfactant-polymer (SP) binary systems. Based on macroscopic properties and microscopic oil displacement effects, we confirmed that the BSB/BHR binary solution has the potential to synergistically improve oil displacement efficiency and quantified the reduction in residual oil and oil displacement efficiency within the swept range.

View Article and Find Full Text PDF

Beta-blockers are pharmaceuticals used to treat cardiovascular diseases such as hypertension, angina pectoris, and arrhythmia. Due to high consumption, they are continuously released into the environment, being detected in many aqueous matrices. The aim of this research is to test the effectiveness of two green liquid-phase microextraction procedures, such as dispersive liquid-liquid microextraction (DLLME) and solidification of floating organic droplet microextraction (SFOME) for the selective extraction of eight beta-blockers (atenolol, nadolol, pindolol, acebutolol, metoprolol, bisoprolol, propranolol, and betaxolol) from aqueous matrices for their analysis by gas chromatography (GC) or liquid chromatography (LC).

View Article and Find Full Text PDF

Syntactic foams are a promising candidate for applications in marine, oil and gas industries in underwater cables and pipelines due to their excellent insulation properties. The effective transmission of electrical energy through cables requires insulation materials with a low loss factor and low dielectric constant. Similarly, in transporting fluid through pipelines, thermal insulation is crucial.

View Article and Find Full Text PDF

To address the challenges of micro-fracture development in shale formations, frequent wellbore instability, and the limited plugging capability of water-based drilling fluids in unconventional reservoirs, a nano-plugging agent (NPA) was synthesized using emulsion polymerization. The synthesized NPA was characterized through thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), revealing excellent high-temperature stability and a spherical or sub-spherical morphology, with particle diameters ranging from approximately 20 to 50 nm. The rheological, filtration, and plugging properties of NPA were systematically evaluated, and its sealing mechanism was analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!